Institute for Molecular Physiology (imP), University of Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany.
Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany.
Plant Cell. 2023 Sep 1;35(9):3413-3428. doi: 10.1093/plcell/koad168.
The kinases SNF1-RELATED KINASE 1 (SnRK1) and TARGET OF RAPAMYCIN (TOR) are central sensors of the energy status, linking this information via diverse regulatory mechanisms to plant development and stress responses. Despite the well-studied functions of SnRK1 and TOR under conditions of limited or ample energy availability, respectively, little is known about the extent to which the 2 sensor systems function and how they are integrated in the same molecular process or physiological context. Here, we demonstrate that both SnRK1 and TOR are required for proper skotomorphogenesis in etiolated Arabidopsis (Arabidopsis thaliana) seedlings, light-induced cotyledon opening, and regular development in light. Furthermore, we identify SnRK1 and TOR as signaling components acting upstream of light- and sugar-regulated alternative splicing events, expanding the known action spectra for these 2 key players in energy signaling. Our findings imply that concurring SnRK1 and TOR activities are required throughout various phases of plant development. Based on the current knowledge and our findings, we hypothesize that turning points in the activities of these sensor kinases, as expected to occur upon illumination of etiolated seedlings, instead of signaling thresholds reflecting the nutritional status may modulate developmental programs in response to altered energy availability.
SNF1-RELATED KINASE 1(SnRK1)和 TARGET OF RAPAMYCIN(TOR)激酶是能量状态的核心传感器,通过多种调节机制将这一信息与植物发育和应激反应联系起来。尽管 SnRK1 和 TOR 在能量有限或充足的条件下的功能已经得到了很好的研究,但对于这两个传感器系统在同一分子过程或生理背景下的作用程度以及它们是如何整合的,人们知之甚少。在这里,我们证明了 SnRK1 和 TOR 都需要在黑暗条件下的拟南芥(Arabidopsis thaliana)幼苗中正确进行暗形态发生、光诱导的子叶张开以及光下的正常发育。此外,我们确定了 SnRK1 和 TOR 作为信号成分,作用于光和糖调节的可变剪接事件的上游,扩大了这两个能量信号关键因子的已知作用光谱。我们的研究结果表明,SnRK1 和 TOR 的活性在植物发育的各个阶段都需要协同作用。基于目前的知识和我们的发现,我们假设这些传感器激酶的活性转折点,如预期的那样,在黑暗条件下的幼苗受到光照时发生,而不是反映营养状态的信号阈值,可能会调节发育程序以适应能量可用性的变化。