Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden.
School of Infection and Immunity, University of Glasgow, Wellcome Centre for Integrative Parasitology, Glasgow, UK.
Nature. 2023 Mar;615(7954):934-938. doi: 10.1038/s41586-023-05817-y. Epub 2023 Mar 22.
Mitochondrial energy conversion requires an intricate architecture of the inner mitochondrial membrane. Here we show that a supercomplex containing all four respiratory chain components contributes to membrane curvature induction in ciliates. We report cryo-electron microscopy and cryo-tomography structures of the supercomplex that comprises 150 different proteins and 311 bound lipids, forming a stable 5.8-MDa assembly. Owing to subunit acquisition and extension, complex I associates with a complex IV dimer, generating a wedge-shaped gap that serves as a binding site for complex II. Together with a tilted complex III dimer association, it results in a curved membrane region. Using molecular dynamics simulations, we demonstrate that the divergent supercomplex actively contributes to the membrane curvature induction and tubulation of cristae. Our findings highlight how the evolution of protein subunits of respiratory complexes has led to the I-II-III-IV supercomplex that contributes to the shaping of the bioenergetic membrane, thereby enabling its functional specialization.
线粒体的能量转换需要一个复杂的内部线粒体膜结构。在这里,我们表明,含有所有四个呼吸链成分的超级复合物有助于纤毛虫中的膜曲率诱导。我们报告了超级复合物的冷冻电子显微镜和冷冻断层扫描结构,该复合物由 150 种不同的蛋白质和 311 个结合脂质组成,形成了一个稳定的 5.8MDa 组装体。由于亚基的获得和扩展,复合物 I 与复合物 IV 二聚体结合,产生一个楔形间隙,作为复合物 II 的结合位点。与倾斜的复合物 III 二聚体结合一起,导致膜区域弯曲。通过分子动力学模拟,我们证明了发散的超级复合物积极有助于膜曲率诱导和嵴的管状化。我们的发现强调了呼吸复合物的蛋白质亚基的进化如何导致 I-II-III-IV 超级复合物有助于生物能量膜的形成,从而实现其功能专业化。