Suppr超能文献

基于高效 DCNN-Resunet 方法的新型 Gateaux 导数在多类脑肿瘤分割中的应用

A novel Gateaux derivatives with efficient DCNN-Resunet method for segmenting multi-class brain tumor.

机构信息

Computer Science and Engineering, National Institute of Technology Patna, Ashok Rajpath, Patna, 800005, Bihar, India.

出版信息

Med Biol Eng Comput. 2023 Aug;61(8):2115-2138. doi: 10.1007/s11517-023-02824-z. Epub 2023 Jun 20.

Abstract

In hospitals and pathology, observing the features and locations of brain tumors in Magnetic Resonance Images (MRI) is a crucial task for assisting medical professionals in both treatment and diagnosis. The multi-class information about the brain tumor is often obtained from the patient's MRI dataset. However, this information may vary in different shapes and sizes for various brain tumors, making it difficult to detect their locations in the brain. To resolve these issues, a novel customized Deep Convolution Neural Network (DCNN) based Residual-Unet (ResUnet) model with Transfer Learning (TL) is proposed for predicting the locations of the brain tumor in an MRI dataset. The DCNN model has been used to extract the features from input images and select the Region Of Interest (ROI) by using the TL technique for training it faster. Furthermore, the min-max normalizing approach is used to enhance the color intensity value for particular ROI boundary edges in the brain tumor images. Specifically, the boundary edges of the brain tumors have been detected by utilizing Gateaux Derivatives (GD) method to identify the multi-class brain tumors precisely. The proposed scheme has been validated on two datasets namely the brain tumor, and Figshare MRI datasets for detecting multi-class Brain Tumor Segmentation (BTS).The experimental results have been analyzed by evaluation metrics namely, accuracy (99.78, and 99.03), Jaccard Coefficient (93.04, and 94.95), Dice Factor Coefficient (DFC) (92.37, and 91.94), Mean Absolute Error (MAE) (0.0019, and 0.0013), and Mean Squared Error (MSE) (0.0085, and 0.0012) for proper validation. The proposed system outperforms the state-of-the-art segmentation models on the MRI brain tumor dataset.

摘要

在医院和病理学中,观察磁共振图像(MRI)中脑肿瘤的特征和位置对于协助医疗专业人员进行治疗和诊断至关重要。脑肿瘤的多类信息通常来自患者的 MRI 数据集。然而,由于不同脑肿瘤的形状和大小不同,因此很难在大脑中检测到它们的位置。为了解决这些问题,提出了一种基于定制的深度卷积神经网络(DCNN)的具有迁移学习(TL)的残差-Unet(ResUnet)模型,用于预测 MRI 数据集中脑肿瘤的位置。DCNN 模型用于从输入图像中提取特征,并使用 TL 技术选择感兴趣区域(ROI),以更快地对其进行训练。此外,使用最小-最大归一化方法来增强脑肿瘤图像中特定 ROI 边界边缘的颜色强度值。具体来说,利用 Gateaux Derivatives(GD)方法检测脑肿瘤的边界边缘,以精确识别多类脑肿瘤。在两个数据集,即脑肿瘤和 Figshare MRI 数据集上验证了所提出的方案,以检测多类脑肿瘤分割(BTS)。通过评估指标,如准确性(99.78 和 99.03)、Jaccard 系数(93.04 和 94.95)、Dice 因子系数(DFC)(92.37 和 91.94)、平均绝对误差(MAE)(0.0019 和 0.0013)和均方误差(MSE)(0.0085 和 0.0012),对实验结果进行了分析,以进行适当的验证。所提出的系统在 MRI 脑肿瘤数据集上优于最先进的分割模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验