Suppr超能文献

源于随机临床试验统计学无显著结果的缺乏治疗效果的证据。

Evidence of Lack of Treatment Efficacy Derived From Statistically Nonsignificant Results of Randomized Clinical Trials.

机构信息

Division of Clinical Epidemiology, Geneva University Hospitals, and Faculty of Medicine, University of Geneva, Geneva, Switzerland.

出版信息

JAMA. 2023 Jun 20;329(23):2050-2056. doi: 10.1001/jama.2023.8549.

Abstract

IMPORTANCE

Many randomized clinical trials yield statistically nonsignificant results. Such results are difficult to interpret within the dominant statistical framework.

OBJECTIVE

To estimate the strength of evidence in favor of the null hypothesis of no effect vs the prespecified effectiveness hypothesis among nonsignificant primary outcome results of randomized clinical trials by application of the likelihood ratio.

DESIGN, SETTING, AND PARTICIPANTS: Cross-sectional study of statistically nonsignificant results for primary outcomes of randomized clinical trials published in 6 leading general medical journals in 2021.

OUTCOME MEASURES

The likelihood ratio for the null hypothesis of no effect vs the effectiveness hypothesis stated in the trial protocol (alternate hypothesis). The likelihood ratio quantifies the support that the data provide to one hypothesis vs the other.

RESULTS

In 130 articles that reported 169 statistically nonsignificant results for primary outcomes, 15 results (8.9%) favored the alternate hypothesis (likelihood ratio, <1), and 154 (91.1%) favored the null hypothesis of no effect (likelihood ratio, >1). For 117 (69.2%), the likelihood ratio exceeded 10; for 88 (52.1%), it exceeded 100; and for 50 (29.6%), it exceeded 1000. Likelihood ratios were only weakly correlated with P values (Spearman r, 0.16; P = .045).

CONCLUSIONS

A large proportion of statistically nonsignificant primary outcome results of randomized clinical trials provided strong support for the hypothesis of no effect vs the alternate hypothesis of clinical efficacy stated a priori. Reporting the likelihood ratio may improve the interpretation of clinical trials, particularly when observed differences in the primary outcome are statistically nonsignificant.

摘要

重要性

许多随机临床试验得出的结果在统计学上并不显著。在占主导地位的统计框架内,很难解释这些结果。

目的

通过应用似然比,估计在随机临床试验主要结局结果无统计学意义的情况下,支持无效假设与预先指定的有效性假设的证据强度。

设计、设置和参与者:这是一项横断面研究,研究了 2021 年 6 种主要普通医学期刊上发表的随机临床试验主要结局无统计学意义的结果。

结局测量

无效假设与试验方案中规定的有效性假设(备择假设)的似然比。似然比量化了数据对一个假设的支持程度与另一个假设的支持程度。

结果

在 130 篇报告了 169 项主要结局无统计学意义的结果的文章中,有 15 项结果(8.9%)支持备择假设(似然比<1),而 154 项(91.1%)支持无效应的无效假设(似然比>1)。对于 117 项(69.2%),似然比超过 10;对于 88 项(52.1%),超过 100;对于 50 项(29.6%),超过 1000。似然比与 P 值仅呈弱相关(Spearman r,0.16;P=0.045)。

结论

大量随机临床试验的主要结局无统计学意义的结果强烈支持无效假设,而不是预先指定的临床疗效的备择假设。报告似然比可能会改善临床试验的解释,特别是当主要结局的观察差异在统计学上无显著差异时。

相似文献

2
How to use likelihood ratios to interpret evidence from randomized trials.如何使用似然比来解读随机试验中的证据。
J Clin Epidemiol. 2021 Aug;136:235-242. doi: 10.1016/j.jclinepi.2021.04.010. Epub 2021 Apr 27.

本文引用的文献

9
How to use likelihood ratios to interpret evidence from randomized trials.如何使用似然比来解读随机试验中的证据。
J Clin Epidemiol. 2021 Aug;136:235-242. doi: 10.1016/j.jclinepi.2021.04.010. Epub 2021 Apr 27.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验