Killian Michael O, Tian Shubo, Xing Aiwen, Hughes Dana, Gupta Dipankar, Wang Xiaoyu, He Zhe
College of Social Work, Florida State University, Tallahassee, FL, United States.
Department of Statistics, Florida State University, Tallahassee, FL, United States.
JMIR Cardio. 2023 Jun 20;7:e45352. doi: 10.2196/45352.
The prediction of posttransplant health outcomes for pediatric heart transplantation is critical for risk stratification and high-quality posttransplant care.
The purpose of this study was to examine the use of machine learning (ML) models to predict rejection and mortality for pediatric heart transplant recipients.
Various ML models were used to predict rejection and mortality at 1, 3, and 5 years after transplantation in pediatric heart transplant recipients using United Network for Organ Sharing data from 1987 to 2019. The variables used for predicting posttransplant outcomes included donor and recipient as well as medical and social factors. We evaluated 7 ML models-extreme gradient boosting (XGBoost), logistic regression, support vector machine, random forest (RF), stochastic gradient descent, multilayer perceptron, and adaptive boosting (AdaBoost)-as well as a deep learning model with 2 hidden layers with 100 neurons and a rectified linear unit (ReLU) activation function followed by batch normalization for each and a classification head with a softmax activation function. We used 10-fold cross-validation to evaluate model performance. Shapley additive explanations (SHAP) values were calculated to estimate the importance of each variable for prediction.
RF and AdaBoost models were the best-performing algorithms for different prediction windows across outcomes. RF outperformed other ML algorithms in predicting 5 of the 6 outcomes (area under the receiver operating characteristic curve [AUROC] 0.664 and 0.706 for 1-year and 3-year rejection, respectively, and AUROC 0.697, 0.758, and 0.763 for 1-year, 3-year, and 5-year mortality, respectively). AdaBoost achieved the best performance for prediction of 5-year rejection (AUROC 0.705).
This study demonstrates the comparative utility of ML approaches for modeling posttransplant health outcomes using registry data. ML approaches can identify unique risk factors and their complex relationship with outcomes, thereby identifying patients considered to be at risk and informing the transplant community about the potential of these innovative approaches to improve pediatric care after heart transplantation. Future studies are required to translate the information derived from prediction models to optimize counseling, clinical care, and decision-making within pediatric organ transplant centers.
预测小儿心脏移植后的健康结局对于风险分层和高质量的移植后护理至关重要。
本研究的目的是检验使用机器学习(ML)模型预测小儿心脏移植受者的排斥反应和死亡率。
使用1987年至2019年器官共享联合网络的数据,采用各种ML模型预测小儿心脏移植受者移植后1年、3年和5年的排斥反应和死亡率。用于预测移植后结局的变量包括供体和受体以及医学和社会因素。我们评估了7种ML模型——极端梯度提升(XGBoost)、逻辑回归、支持向量机、随机森林(RF)、随机梯度下降、多层感知器和自适应提升(AdaBoost)——以及一个深度学习模型,该模型有2个隐藏层,每层有100个神经元,采用修正线性单元(ReLU)激活函数,随后对每个隐藏层进行批量归一化处理,并带有一个具有softmax激活函数的分类头。我们使用10折交叉验证来评估模型性能。计算Shapley加法解释(SHAP)值以估计每个变量对预测的重要性。
对于不同预测窗口的不同结局,RF和AdaBoost模型是表现最佳的算法。在预测6种结局中的5种时,RF的表现优于其他ML算法(1年和3年排斥反应的受试者工作特征曲线下面积[AUROC]分别为0.664和0.706,1年、3年和5年死亡率的AUROC分别为0.697、0.758和0.763)。AdaBoost在预测5年排斥反应方面表现最佳(AUROC为0.705)。
本研究证明了ML方法在使用登记数据对移植后健康结局进行建模方面的比较效用。ML方法可以识别独特的风险因素及其与结局的复杂关系,从而识别被认为有风险的患者,并向移植界通报这些创新方法在改善小儿心脏移植后护理方面的潜力。未来需要开展研究,将从预测模型中获得的信息转化为优化小儿器官移植中心内的咨询、临床护理和决策。