Suppr超能文献

人工智能预测脑死亡供肝移植术后患者的生存情况:回顾性多中心研究。

Artificial intelligence for predicting survival following deceased donor liver transplantation: Retrospective multi-center study.

机构信息

Division of HBP Surgery & Liver Transplantation, Department of Surgery, Korea University College of Medicine, Seoul, South Korea.

AI Center, Korea University College of Medicine, Seoul, South Korea.

出版信息

Int J Surg. 2022 Sep;105:106838. doi: 10.1016/j.ijsu.2022.106838. Epub 2022 Aug 24.

Abstract

BACKGROUND

Previous studies have indicated that the model for end-stage liver disease (MELD) score may fail to predict post-transplantation patient survival. Similarly, other scores (donor MELD score, balance of risk score) that have been developed to predict transplant outcomes have not gained widespread use. These scores are typically derived using linear statistical models. This study aimed to compare the performance of traditional statistical models with machine learning approaches for predicting survival following liver transplantation.

MATERIALS AND METHODS

Data were obtained from 785 deceased donor liver transplant recipients enrolled in the Korean Organ Transplant Registry (2014-2019). Five machine learning methods (random forest, artificial neural networks, decision tree, naïve Bayes, and support vector machine) and four traditional statistical models (Cox regression, MELD score, donor MELD score and balance of risk score) were compared to predict survival.

RESULTS

Among the machine learning methods, the random forest yielded the highest area under the receiver operating characteristic curve (AUC-ROC) values (1-month = 0.80; 3-month = 0.85; and 12-month = 0.81) for predicting survival. The AUC-ROC values of the Cox regression analysis were 0.75, 0.86, and 0.77 for 1-month, 3-month, and 12-month post-transplant survival, respectively. However, the AUC-ROC values of the MELD, donor MELD, and balance of risk scores were all below 0.70. Based on the variable importance of the random forest analysis in this study, the major predictors associated with survival were cold ischemia time, donor ICU stay, recipient weight, recipient BMI, recipient age, recipient INR, and recipient albumin level. As with the Cox regression analysis, donor ICU stay, donor bilirubin level, BAR score, and recipient albumin levels were also important factors associated with post-transplant survival in the RF model. The coefficients of these variables were also statistically significant in the Cox model (p < 0.05). The SHAP ranges for selected predictors for the 12-month survival were (-0.02,0.10) for recipient albumin, (-0.05,0.07) for donor bilirubin and (-0.02,0.25) for recipient height. Surprisingly, although not statistically significant in the Cox model, recipient weight, recipient BMI, recipient age, or recipient INR were important factors in our random forest model for predicting post-transplantation survival.

CONCLUSION

Machine learning algorithms such as the random forest were superior to conventional Cox regression and previously reported survival scores for predicting 1-month, 3-month, and 12-month survival following liver transplantation. Therefore, artificial intelligence may have significant potential in aiding clinical decision-making during liver transplantation, including matching donors and recipients.

摘要

背景

先前的研究表明,终末期肝病模型(MELD)评分可能无法预测移植后的患者生存情况。同样,为预测移植结果而开发的其他评分(供体 MELD 评分、风险平衡评分)也未得到广泛应用。这些评分通常是使用线性统计模型得出的。本研究旨在比较传统统计学模型与机器学习方法在预测肝移植后生存方面的性能。

材料与方法

本研究的数据来自韩国器官移植登记处(2014-2019 年)登记的 785 名已故供体肝移植受者。我们比较了五种机器学习方法(随机森林、人工神经网络、决策树、朴素贝叶斯和支持向量机)和四种传统统计学模型(Cox 回归、MELD 评分、供体 MELD 评分和风险平衡评分)在预测生存方面的表现。

结果

在机器学习方法中,随机森林在预测生存方面的受试者工作特征曲线下面积(AUC-ROC)值最高(1 个月=0.80;3 个月=0.85;12 个月=0.81)。Cox 回归分析的 AUC-ROC 值分别为 1 个月、3 个月和 12 个月移植后生存的 0.75、0.86 和 0.77。然而,MELD、供体 MELD 和风险平衡评分的 AUC-ROC 值均低于 0.70。基于本研究中随机森林分析的变量重要性,与生存相关的主要预测因素为冷缺血时间、供体 ICU 住院时间、受者体重、受者 BMI、受者年龄、受者 INR 和受者白蛋白水平。与 Cox 回归分析一样,供体 ICU 住院时间、供体胆红素水平、BAR 评分和受者白蛋白水平也是 RF 模型中与移植后生存相关的重要因素。这些变量的系数在 Cox 模型中也具有统计学意义(p<0.05)。在 Cox 模型中,12 个月生存的选定预测指标的 SHAP 范围为(-0.02,0.10),受者白蛋白;(-0.05,0.07),供体胆红素;(-0.02,0.25),受者身高。令人惊讶的是,尽管在 Cox 模型中没有统计学意义,但受者体重、受者 BMI、受者年龄或受者 INR 是我们的随机森林模型中预测移植后生存的重要因素。

结论

机器学习算法(如随机森林)优于传统的 Cox 回归和先前报道的生存评分,可用于预测肝移植后 1 个月、3 个月和 12 个月的生存。因此,人工智能在辅助肝移植过程中的临床决策方面可能具有重要潜力,包括供体和受者的匹配。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验