Tuor U I, Fitch W, Graham D I, Mendelow A D
J Cereb Blood Flow Metab. 1986 Aug;6(4):481-5. doi: 10.1038/jcbfm.1986.82.
The relationships between CBF in gray and white matter to those of the fast and slow components of xenon-133 clearance curves remain uncertain. CBF was measured in 13 anaesthetized baboons under a variety of conditions, using both the xenon-133 clearance technique and [14C]iodoantipyrine quantitative autoradiography. There was a linear relationship between CBF, as determined by the stochastic (height/area) analysis of the clearance curve, and mean CBF determined from the autoradiograms (r = 0.94, p less than 0.001, slope = 0.86 +/- 0.09). There was also a linear correlation between the fast-flow component (measured with xenon-133) and blood flow in the cerebral gray matter (measured with [14C]iodoantipyrine) (r = 0.92, p less than 0.001, slope = 0.69 +/- 0.15) and between the slow-flow component (with xenon-133) and blood flow in white matter (with [14C]iodoantipyrine) (r = 0.79, p less than 0.01, slope = 0.81 +/- 0.10). In the primate brain, the fast- and slow-flow indices therefore appear to be representative of CBF in gray matter and white matter, respectively, whereas the stochastic analysis provides a stable measure of mean CBF within the tissue monitored.