Suppr超能文献

层状硅酸盐狭缝孔中超临界二氧化碳和甲烷的化学和动力学。

Chemistry and Dynamics of Supercritical Carbon Dioxide and Methane in the Slit Pores of Layered Silicates.

机构信息

Department of Chemistry and Biochemistry, St. Mary's College of Maryland, 47645 College Drive, St. Mary's City, Maryland 20686, United States.

Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States.

出版信息

Acc Chem Res. 2023 Jul 4;56(13):1862-1871. doi: 10.1021/acs.accounts.3c00188. Epub 2023 Jun 20.

Abstract

ConspectusIn the mid 2010s, high-pressure diffraction and spectroscopic tools opened a window into the molecular-scale behavior of fluids under the conditions of many CO sequestration and shale/tight gas reservoirs, conditions where CO and CH are present as variably wet supercritical fluids. Integrating high-pressure spectroscopy and diffraction with molecular modeling has revealed much about the ways that supercritical CO and CH behave in reservoir components, particularly in the slit-shaped micro- and mesopores of layered silicates (phyllosilicates) abundant in caprocks and shales. This Account summarizes how supercritical CO and CH behave in the slit pores of swelling phyllosilicates as functions of the HO activity, framework structural features, and charge-balancing cation properties at 90 bar and 323 K, conditions similar to a reservoir at ∼1 km depth. Slit pores containing cations with large radii, low hydration energy, and large polarizability readily interact with CO, allowing CO and HO to adsorb and coexist in these interlayer pores over a wide range of fluid humidities. In contrast, cations with small radii, high hydration energy, and low polarizability weakly interact with CO, leading to reduced CO uptake and a tendency to exclude CO from interlayers when HO is abundant. The reorientation dynamics of confined CO depends on the interlayer pore height, which is strongly influenced by the cation properties, framework properties, and fluid humidity. The silicate structural framework also influences CO uptake and behavior; for example, smectites with increasing F-for-OH substitution in the framework take up greater quantities of CO. Reactions that trap CO in carbonate phases have been observed in thin HO films near smectite surfaces, including a dissolution-reprecipitation mechanism when the edge surface area is large and an ion exchange-precipitation mechanism when the interlayer cation can form a highly insoluble carbonate. In contrast, supercritical CH does not readily associate with cations, does not react with smectites, and is only incorporated into interlayer slit mesopores when (i) the pore has a -dimension large enough to accommodate CH, (ii) the smectite has low charge, and (iii) the HO activity is low. The adsorption and displacement of CH by CO and vice versa have been studied on the molecular scale in one shale, but opportunities remain to examine behavioral details in this more complicated, slit-pore inclusive system.

摘要

概述在 21 世纪 10 年代中期,高压衍射和光谱技术为我们打开了一扇窗,使我们能够了解许多二氧化碳封存和页岩/致密气藏条件下流体的分子尺度行为,在这些条件下,CO 和 CH 以不同含水量的超临界流体形式存在。将高压光谱学和衍射与分子建模相结合,揭示了超临界 CO 和 CH 在储层组分中的行为方式,特别是在富含盖层和页岩的层状硅酸盐(层状黏土矿物)的狭缝状微孔和介孔中的行为方式。本综述总结了在 90 巴和 323 K 的条件下,超临界 CO 和 CH 在膨胀型层状黏土矿物的狭缝孔中的行为,这些条件与深度约为 1 公里的储层中的条件相似。含有大半径、低水合能和大极化率的阳离子的狭缝孔很容易与 CO 相互作用,从而允许 CO 和 HO 在这些层间孔隙中以较宽的流体湿度范围共存。相比之下,半径小、水合能高、极化率低的阳离子与 CO 相互作用较弱,导致 CO 摄取减少,当 HO 丰富时,CO 有从层间排斥的趋势。受限 CO 的重取向动力学取决于层间孔的高度,而层间孔的高度又强烈受阳离子性质、结构性质和流体湿度的影响。硅酸盐结构骨架也会影响 CO 的吸收和行为;例如,骨架中氟取代羟基的比例增加的蒙脱石吸收更多的 CO。在蒙脱石表面附近的薄水膜中观察到了将 CO 捕获在碳酸盐相中的反应,包括当边缘表面积较大时的溶解-沉淀机制和当层间阳离子能够形成高度不溶的碳酸盐时的离子交换-沉淀机制。相比之下,超临界 CH 不易与阳离子结合,也不易与蒙脱石反应,只有当(i)孔的-尺寸足够大以容纳 CH,(ii)蒙脱石的电荷较低,(iii)HO 活度较低时,才会被纳入层间狭缝介孔中。在一种页岩中,已经在分子尺度上研究了 CO 和 CH 的吸附和置换,反之亦然,但仍有机会在这个更复杂的、包含狭缝孔的系统中研究行为细节。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验