Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA.
Phys Chem Chem Phys. 2019 Mar 27;21(13):6917-6924. doi: 10.1039/c9cp00851a.
The interactions among fluid species such as H2O, CO2, and CH4 confined in nano- and meso-pores in shales and other rocks is of central concern to understanding the chemical behavior and transport properties of these species in the earth's subsurface and is of special concern to geological C-sequestration and enhanced production of oil and natural gas. The behavior of CO2, and CH4 is less well understood than that of H2O. This paper presents the results of a computational modeling study of the partitioning of CO2 and CH4 between bulk fluid and nano- and meso-pores bounded by the common clay mineral montmorillonite. The calculations were done at 323 K and a total fluid pressure of 124 bars using a novel approach (constant reservoir composition molecular dynamics, CRC-MD) that uses bias forces to maintain a constant composition in the fluid external to the pore. This purely MD approach overcomes the difficulties in making stochastic particle insertion-deletion moves in dense fluids encountered in grand canonical Monte Carlo and related hybrid approaches. The results show that both the basal siloxane surfaces and protonated broken edge surfaces of montmorillonite both prefer CO2 relative to CH4 suggesting that methods of enhanced oil and gas production using CO2 will readily displace CH4 from such pores. This preference for CO2 is due to its preferred interaction with the surfaces and extends to approximately 20 Å from them.
在页岩和其他岩石的纳米和介孔中,H2O、CO2 和 CH4 等流体物种的相互作用是理解这些物种在地球地下环境中的化学行为和输运性质的核心关注点,对于地质封存 CO2 和提高石油和天然气产量特别关注。CO2 和 CH4 的行为比 H2O 理解得更少。本文介绍了一种计算模型研究的结果,该研究是关于 CO2 和 CH4 在由常见粘土矿物蒙脱石纳米和介孔边界之间的分配行为。这些计算是在 323 K 和总流体压力为 124 巴的条件下进行的,使用了一种新方法(恒定储层组成分子动力学,CRC-MD),该方法使用偏置力来保持孔外流体的恒定组成。这种纯粹的 MD 方法克服了在密集流体中进行随机粒子插入-删除移动时遇到的困难,这些困难在巨正则蒙特卡罗和相关混合方法中遇到。结果表明,蒙脱石的基硅氧烷表面和质子化的断裂边缘表面都优先选择 CO2 而不是 CH4,这表明使用 CO2 提高石油和天然气产量的方法将很容易将 CH4 从这些孔隙中置换出来。这种对 CO2 的偏好是由于其与表面的优先相互作用,并延伸到距表面约 20 Å 的距离。