School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, Guangdong 510006, China.
Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China.
ACS Appl Mater Interfaces. 2023 Jul 5;15(26):31584-31594. doi: 10.1021/acsami.3c06386. Epub 2023 Jun 20.
Metal-oxide interfaces on Cu-based catalysts play very important roles in the low-temperature water-gas shift reaction (LT-WGSR). However, developing catalysts with abundant, active, and robust Cu-metal oxide interfaces under LT-WGSR conditions remains challenging. Herein, we report the successful development of an inverse copper-ceria catalyst (Cu@CeO), which exhibited very high efficiency for the LT-WGSR. At a reaction temperature of 250 °C, the LT-WGSR activity of the Cu@CeO catalyst was about three times higher than that of a pristine Cu catalyst without CeO. Comprehensive quasi-in situ structural characterizations indicated that the Cu@CeO catalyst was rich in CeO/CuO/Cu tandem interfaces. Reaction kinetics studies and density functional theory (DFT) calculations revealed that the Cu/Cu interfaces were the active sites for the LT-WGSR, while adjacent CeO nanoparticles play a key role in activating HO and stabilizing the Cu/Cu interfaces. Our study highlights the role of the CeO/CuO/Cu tandem interface in regulating catalyst activity and stability, thus contributing to the development of improved Cu-based catalysts for the LT-WGSR.
在基于铜的催化剂上,金属氧化物界面在低温水汽变换反应(LT-WGSR)中起着非常重要的作用。然而,在 LT-WGSR 条件下开发具有丰富、活性和稳定的 Cu-金属氧化物界面的催化剂仍然具有挑战性。在此,我们报告了成功开发出一种反相铜-氧化铈催化剂(Cu@CeO),该催化剂在 LT-WGSR 中表现出非常高的效率。在反应温度为 250°C 时,Cu@CeO 催化剂的 LT-WGSR 活性大约是没有 CeO 的原始 Cu 催化剂的三倍。综合的拟原位结构表征表明,Cu@CeO 催化剂富含 CeO/CuO/Cu 串联界面。反应动力学研究和密度泛函理论(DFT)计算表明,Cu/Cu 界面是 LT-WGSR 的活性位,而相邻的 CeO 纳米颗粒在活化 HO 和稳定 Cu/Cu 界面方面起着关键作用。我们的研究强调了 CeO/CuO/Cu 串联界面在调节催化剂活性和稳定性方面的作用,从而有助于开发用于 LT-WGSR 的改进型 Cu 基催化剂。