Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
ACS Appl Mater Interfaces. 2023 Jul 5;15(26):31403-31408. doi: 10.1021/acsami.3c03552. Epub 2023 Jun 20.
Sulfide-based all-solid-state Li/S batteries have attracted considerable attention as next-generation batteries with high energy density. However, their practical applications are limited by short-circuiting due to Li dendrite growth. One of the possible reasons for this phenomenon is the contact failure caused by void formation at the Li/solid electrolyte interface during Li stripping. Herein, we studied the operating conditions, such as stack pressure, operating temperature, and electrode composition, that could potentially suppress the formation of voids. Furthermore, we investigated the effects of these operating conditions on the Li stripping/plating performance of all-solid-state Li symmetric cells containing glass sulfide electrolytes with a reduction tolerance. As a result, symmetric cells with Li-Mg alloy electrodes instead of Li metal electrodes exhibited high cycling stability at current densities above 2.0 mA cm, a temperature of 60 °C, and stack pressures of 3-10 MPa. In addition, an all-solid-state Li/S cell with a Li-Mg alloy negative electrode operated stably for 50 cycles at a current density of 2.0 mA cm, stack pressure of 5 MPa, and temperature of 60 °C, while its measured capacity was close to a theoretical value. The obtained results provide guidelines for the construction of all-solid-state Li/S batteries that can reversibly operate at high current densities.
基于硫化物的全固态 Li/S 电池作为具有高能量密度的下一代电池引起了相当大的关注。然而,由于 Li 枝晶的生长,它们的实际应用受到了限制。这种现象的一个可能原因是在 Li 剥离过程中 Li/固体电解质界面处由于形成空隙而导致接触失效。在此,我们研究了可能抑制空隙形成的操作条件,例如堆叠压力、工作温度和电极组成。此外,我们研究了这些操作条件对含有还原容忍玻璃硫化物电解质的全固态 Li 对称电池的 Li 剥离/电镀性能的影响。结果表明,在电流密度高于 2.0 mA cm、温度为 60°C 和堆叠压力为 3-10 MPa 的条件下,使用 Li-Mg 合金电极代替 Li 金属电极的对称电池具有高循环稳定性。此外,Li-Mg 合金负极的全固态 Li/S 电池在电流密度为 2.0 mA cm、堆叠压力为 5 MPa 和温度为 60°C 的条件下稳定运行 50 个循环,其测量的容量接近理论值。所得结果为构建可在高电流密度下可逆运行的全固态 Li/S 电池提供了指导。