Dandena Berhanu Degagsa, Su Wei-Nien, Tsai Dah-Shyang, Nikodimos Yosef, Taklu Bereket Woldegbreal, Bezabh Hailemariam Kassa, Desta Gidey Bahre, Yang Sheng-Chiang, Lakshmanan Keseven, Sheu Hwo-Shuenn, Wang Chia-Hsin, Wu She-Huang, Hwang Bing Joe
Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 106, Taiwan.
Sustainable Electrochemical Energy Development Center, National Taiwan University of Science and Technology, Taipei, 106, Taiwan.
Small Methods. 2025 Jan;9(1):e2400571. doi: 10.1002/smtd.202400571. Epub 2024 Oct 4.
The solid electrolyte is anticipated to prevent lithium dendrite formation. However, preventing interface reactions and the development of undesirable lithium metal deposition during cycling are difficult and remain unresolved. Here, to comprehend these occurrences better, this study reports an alloy formation strategy for enhanced interface stability by incorporating antimony (Sb) in the lithium argyrodite solid electrolyte LiPSCl (LPSC-P) to form Li-Sb alloy. The Li-Sb alloy emergence at the anodic interface is crucial in facilitating uniform lithium deposition, resulting in excellent long-term stability, and achieving the highest critical current density of 14.5 mA cm (among the reported sulfide solid electrolytes) without lithium dendrite penetration. Furthermore, Li-Sb alloy formation maintain interfacial contact, even, after several plating and stripping. The Li-Sb alloy formation is confirmed by XRD, Raman, and XPS. The work demonstrates the prospect of utilizing alloy-forming electrolytes for advanced solid-state batteries.
固态电解质有望防止锂枝晶的形成。然而,在循环过程中防止界面反应以及不期望的锂金属沉积的产生是困难的,并且仍然没有得到解决。在此,为了更好地理解这些现象,本研究报告了一种合金形成策略,通过在锂硫银锗矿固态电解质LiPSCl(LPSC-P)中掺入锑(Sb)以形成Li-Sb合金,从而提高界面稳定性。阳极界面处Li-Sb合金的出现对于促进均匀的锂沉积至关重要,这导致了优异的长期稳定性,并实现了14.5 mA cm的最高临界电流密度(在所报道的硫化物固态电解质中)且无锂枝晶穿透。此外,即使经过多次电镀和剥离后,Li-Sb合金的形成仍能保持界面接触。通过X射线衍射(XRD)、拉曼光谱和X射线光电子能谱(XPS)证实了Li-Sb合金的形成。这项工作展示了利用形成合金的电解质用于先进固态电池的前景。