Horticultural Sciences Department, University of Florida, Gainesville, FL 32601, USA.
Institute of Molecular Plant Biology, ETH Zurich, Zurich 8092, Switzerland.
Plant Physiol. 2023 Sep 22;193(2):1456-1478. doi: 10.1093/plphys/kiad358.
Molecular mechanisms that distinguish the synthesis of semi-crystalline α-glucan polymers found in plant starch granules from the synthesis of water-soluble polymers by nonplant species are not well understood. To address this, starch biosynthetic enzymes from maize (Zea mays L.) endosperm were isolated in a reconstituted environment using yeast (Saccharomyces cerevisiae) as a test bed. Ninety strains were constructed containing unique combinations of 11 synthetic transcription units specifying maize starch synthase (SS), starch phosphorylase (PHO), starch branching enzyme (SBE), or isoamylase-type starch debranching enzyme (ISA). Soluble and insoluble branched α-glucans accumulated in varying proportions depending on the enzyme suite, with ISA function stimulating distribution into the insoluble form. Among the SS isoforms, SSIIa, SSIII, and SSIV individually supported the accumulation of glucan polymer. Neither SSI nor SSV alone produced polymers; however, synergistic effects demonstrated that both isoforms can stimulate α-glucan accumulation. PHO did not support α-glucan production by itself, but it had either positive or negative effects on polymer content depending on which SS or a combination thereof was present. The complete suite of maize enzymes generated insoluble particles resembling native starch granules in size, shape, and crystallinity. Ultrastructural analysis revealed a hierarchical assembly starting with subparticles of approximately 50 nm diameter that coalesce into discrete structures of approximately 200 nm diameter. These are assembled into semi-crystalline α-glucan superstructures up to 4 μm in length filling most of the yeast cytosol. ISA was not essential for the formation of such particles, but their abundance was increased dramatically by ISA presence.
植物淀粉颗粒中半结晶α-葡聚糖聚合物的合成与非植物物种中水溶性聚合物的合成之间的分子机制尚不清楚。为了解决这个问题,使用酵母(酿酒酵母)作为测试床,在重建的环境中分离了来自玉米(Zea mays L.)胚乳的淀粉生物合成酶。构建了 90 株菌株,其中包含指定玉米淀粉合酶(SS)、淀粉磷酸化酶(PHO)、淀粉分支酶(SBE)或异淀粉酶型淀粉分支酶(ISA)的 11 个合成转录单元的独特组合。根据酶套件的不同,可溶和不可溶分支α-葡聚糖以不同的比例积累,ISA 功能刺激其分配到不可溶形式。在 SS 同工型中,SSIIa、SSIII 和 SSIV 各自支持葡聚糖聚合物的积累。SSI 或 SSV 单独都不能产生聚合物;然而,协同作用表明这两种同工型都可以刺激α-葡聚糖的积累。PHO 本身不能支持α-葡聚糖的产生,但它对聚合物含量有积极或消极的影响,这取决于存在的 SS 或其组合。完整的玉米酶套件产生的不溶性颗粒在大小、形状和结晶度上类似于天然淀粉颗粒。超微结构分析显示,从大约 50nm 直径的亚颗粒开始的分层组装,这些亚颗粒聚合并形成大约 200nm 直径的离散结构。这些结构组装成半结晶α-葡聚糖超结构,长度可达 4μm,填充了酵母细胞质的大部分。ISA 对于形成这种颗粒不是必需的,但它的存在极大地增加了这些颗粒的丰度。