Suppr超能文献

利用实空间密度泛函理论计算的投影布居分析研究大体系中的化学键。

Chemical Bonding in Large Systems Using Projected Population Analysis from Real-Space Density Functional Theory Calculations.

机构信息

Department of Computational and Data Sciences, Indian Institute of Science, Bangalore 560012, India.

Indo Korea Science and Technology Center, Bangalore 560065, India.

出版信息

J Chem Theory Comput. 2023 Jul 11;19(13):4216-4231. doi: 10.1021/acs.jctc.3c00114. Epub 2023 Jun 20.

Abstract

We present an efficient and scalable computational approach for conducting projected population analysis from real-space finite-element (FE)-based Kohn-Sham density functional theory calculations (). This work provides an important direction toward extracting chemical bonding information from large-scale DFT calculations on materials systems involving thousands of atoms while accommodating periodic, semiperiodic, or fully nonperiodic boundary conditions. Toward this, we derive the relevant mathematical expressions and develop efficient numerical implementation procedures that are scalable on multinode CPU architectures to compute the projected overlap and Hamilton populations. The population analysis is accomplished by projecting either the self-consistently converged FE discretized Kohn-Sham orbitals or the FE discretized Hamiltonian onto a subspace spanned by a localized atom-centered basis set. The proposed methods are implemented in a unified framework within the code where the ground-state DFT calculations and the population analysis are performed on the same FE grid. We further benchmark the accuracy and performance of this approach on representative material systems involving periodic and nonperiodic DFT calculations with , a widely used projected population analysis code. Finally, we discuss a case study demonstrating the advantages of our scalable approach to extract the quantitative chemical bonding information of hydrogen chemisorbed in large silicon nanoparticles alloyed with carbon, a candidate material for hydrogen storage.

摘要

我们提出了一种高效且可扩展的计算方法,用于从基于实空间有限元(FE)的 Kohn-Sham 密度泛函理论计算()中进行投影种群分析。这项工作为从涉及数千个原子的材料系统的大规模密度泛函理论计算中提取化学成键信息提供了一个重要方向,同时适应周期性、半周期性或完全非周期性边界条件。为此,我们推导出了相关的数学表达式,并开发了高效的数值实现程序,这些程序可在多节点 CPU 架构上扩展,以计算投影重叠和哈密顿种群。通过将自洽收敛的 FE 离散化 Kohn-Sham 轨道或 FE 离散化哈密顿量投影到由局域原子中心基组张成的子空间上来完成种群分析。所提出的方法在 代码中统一框架内实现,其中在相同的 FE 网格上进行基态密度泛函理论计算和种群分析。我们进一步在代表性的材料系统上对该方法的准确性和性能进行了基准测试,这些材料系统涉及周期性和非周期性密度泛函计算,使用了广泛使用的投影种群分析代码 。最后,我们讨论了一个案例研究,展示了我们可扩展方法的优势,用于提取在与碳合金的大硅纳米颗粒中化学吸附的氢的定量化学成键信息,碳是一种候选的储氢材料。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验