Suppr超能文献

高效全电子含时密度泛函理论计算方法:基于富化有限元基组。

Efficient All-Electron Time-Dependent Density Functional Theory Calculations Using an Enriched Finite Element Basis.

机构信息

Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan48109, United States.

Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan48109, United States.

出版信息

J Chem Theory Comput. 2023 Feb 14;19(3):978-991. doi: 10.1021/acs.jctc.2c01052. Epub 2023 Jan 19.

Abstract

We present an efficient and systematically convergent approach to all-electron real-time time-dependent density functional theory (TDDFT) calculations using a mixed basis, termed as enriched finite element (EFE) basis. The EFE basis augments the classical finite element basis (CFE) with a compactly supported numerical atom-centered basis, obtained from atomic ground-state DFT calculations. Particularly, we orthogonalize the enrichment functions with respect to the classical finite element basis to ensure good conditioning of the resultant basis. We employ the second-order Magnus propagator in conjunction with an adaptive Krylov subspace method for efficient time evolution of the Kohn-Sham orbitals. We rely on error estimates to guide our choice of an adaptive finite element mesh as well as the time step to be used in the TDDFT calculations. We observe close to optimal rates of convergence of the dipole moment with respect to spatial and temporal discretizations. Notably, we attain a 50-100 times speedup for the EFE basis over the CFE basis. We also demonstrate the efficacy of the EFE basis for both linear and nonlinear responses by studying the absorption spectra in sodium clusters, the linear to nonlinear response transition in the green fluorescence protein chromophore, and the higher harmonic generation in the magnesium dimer. Lastly, we attain good parallel scalability of our numerical implementation of the EFE basis for up to ∼1000 processors, using a benchmark system of a 50-atom sodium nanocluster.

摘要

我们提出了一种使用混合基的高效、系统收敛的全电子实时时间依赖密度泛函理论(TDDFT)计算方法,称为富集有限元(EFE)基。EFE 基通过从原子基态 DFT 计算中获得的紧支撑数值原子中心基来扩充经典有限元基(CFE)。特别地,我们对富集函数进行正交化,使其相对于经典有限元基具有良好的条件数。我们采用二阶 Magnus 传播子结合自适应 Krylov 子空间方法来高效地演化 Kohn-Sham 轨道。我们依赖误差估计来指导我们在 TDDFT 计算中选择自适应有限元网格和时间步长。我们观察到偶极矩相对于空间和时间离散化的接近最优的收敛速率。值得注意的是,我们使用 EFE 基实现了相对于 CFE 基的 50-100 倍的加速。我们还通过研究钠团簇的吸收光谱、绿色荧光蛋白发色团的线性到非线性响应转变以及镁二聚体的高次谐波产生,展示了 EFE 基在线性和非线性响应方面的有效性。最后,我们在一个 50 原子的钠纳米团簇基准系统上,实现了 EFE 基的数值实现的良好的并行可扩展性,可达约 1000 个处理器。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验