Suppr超能文献

机械化学耦联在水螅再生和模式形成中的作用。

Mechano-Chemical Coupling in Hydra Regeneration and Patterning.

机构信息

Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, 92093 CA, USA.

Department of Biology, Swarthmore College, 500 College Ave, Swarthmore, 19081 PA, USA.

出版信息

Integr Comp Biol. 2023 Dec 29;63(6):1422-1441. doi: 10.1093/icb/icad070.

Abstract

The freshwater cnidarian Hydra can regenerate from wounds, small tissue fragments and even from aggregated cells. This process requires the de novo development of a body axis and oral-aboral polarity, a fundamental developmental process that involves chemical patterning and mechanical shape changes. Gierer and Meinhardt recognized that Hydra's simple body plan and amenability to in vivo experiments make it an experimentally and mathematically tractable model to study developmental patterning and symmetry breaking. They developed a reaction-diffusion model, involving a short-range activator and a long-range inhibitor, which successfully explained patterning in the adult animal. In 2011, HyWnt3 was identified as a candidate for the activator. However, despite the continued efforts of both physicists and biologists, the predicted inhibitor remains elusive. Furthermore, the Gierer-Meinhardt model cannot explain de novo axis formation in cellular aggregates that lack inherited tissue polarity. The aim of this review is to synthesize the current knowledge on Hydra symmetry breaking and patterning. We summarize the history of patterning studies and insights from recent biomechanical and molecular studies, and highlight the need for continued validation of theoretical assumptions and collaboration across disciplinary boundaries. We conclude by proposing new experiments to test current mechano-chemical coupling models and suggest ideas for expanding the Gierer-Meinhardt model to explain de novo patterning, as observed in Hydra aggregates. The availability of a fully sequenced genome, transgenic fluorescent reporter strains, and modern imaging techniques, that enable unprecedented observation of cellular events in vivo, promise to allow the community to crack Hydra's secret to patterning.

摘要

淡水刺胞动物水螅可以从伤口、小组织片段甚至聚集的细胞中再生。这个过程需要从头发育出一个身体轴和口-肛极性,这是一个涉及化学模式和机械形状变化的基本发育过程。Gierer 和 Meinhardt 认识到,水螅简单的身体结构和对体内实验的适应性使它成为一个实验和数学上易于处理的模型,用于研究发育模式和对称性破缺。他们开发了一个涉及短程激活剂和长程抑制剂的反应-扩散模型,成功地解释了成年动物的模式形成。2011 年,HyWnt3 被确定为激活剂的候选物。然而,尽管物理学家和生物学家都在继续努力,但预测的抑制剂仍然难以捉摸。此外,Gierer-Meinhardt 模型无法解释缺乏遗传组织极性的细胞聚集体中从头形成的轴。本综述的目的是综合水螅对称性破缺和模式形成的现有知识。我们总结了模式形成研究的历史和最近生物力学和分子研究的见解,并强调需要继续验证理论假设和跨越学科界限的合作。最后,我们提出了新的实验来测试当前的机械-化学偶联模型,并提出了扩展 Gierer-Meinhardt 模型的想法,以解释在水螅聚集体中观察到的从头模式形成。一个完全测序的基因组、转基因荧光报告菌株和现代成像技术的可用性,使人们能够以前所未有的方式在体内观察细胞事件,有望使该领域能够破解水螅模式形成的秘密。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验