University Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, Villeurbanne, France.
University Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, Villeurbanne, France; Centre de Biologie Structurale, CNRS UMR5048, INSERM U1054, University of Montpellier, Montpellier, France.
Biophys J. 2024 Jul 2;123(13):1792-1803. doi: 10.1016/j.bpj.2024.05.022. Epub 2024 May 23.
Hydra vulgaris, long known for its remarkable regenerative capabilities, is also a long-standing source of inspiration for models of spontaneous patterning. Recently it became clear that early patterning during Hydra regeneration is an integrated mechanochemical process whereby morphogen dynamics is influenced by tissue mechanics. One roadblock to understanding Hydra self-organization is our lack of knowledge about the mechanical properties of these organisms. In this study, we combined microfluidic developments to perform parallelized microaspiration rheological experiments and numerical simulations to characterize these mechanical properties. We found three different behaviors depending on the applied stresses: an elastic response, a viscoelastic response, and tissue rupture. Using models of deformable shells, we quantify their Young's modulus, shear viscosity, and the critical stresses required to switch between behaviors. Based on these experimental results, we propose a description of the tissue mechanics during normal regeneration. Our results provide a first step toward the development of original mechanochemical models of patterning grounded in quantitative experimental data.
普通Hydra 以其显著的再生能力而闻名,也是自发模式形成模型的长期灵感来源。最近,人们清楚地认识到,Hydra 再生过程中的早期模式形成是一个集成的力化学过程,其中形态发生动力学受到组织力学的影响。理解 Hydra 自组织的一个障碍是我们缺乏对这些生物体力学特性的了解。在这项研究中,我们结合微流控技术进行并行微吸流变实验和数值模拟,以表征这些力学特性。我们发现,根据施加的应力,存在三种不同的行为:弹性响应、粘弹性响应和组织破裂。使用可变形壳模型,我们量化了它们的杨氏模量、剪切粘度以及在行为之间切换所需的临界应力。基于这些实验结果,我们提出了在正常再生过程中组织力学的描述。我们的研究结果为基于定量实验数据的原始力化学模式形成模型的发展迈出了第一步。