Department of Biological Sciences, University of Delaware, Newark, Delaware, USA.
Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA.
Microbiol Spectr. 2023 Aug 17;11(4):e0454822. doi: 10.1128/spectrum.04548-22. Epub 2023 Jun 21.
The prevalence of drug-resistant Mycobacterium tuberculosis infections has prompted extensive efforts to exploit new drug targets in this globally important pathogen. ClpC1, the unfoldase component of the essential ClpC1P1P2 protease, has emerged as one particularly promising antibacterial target. However, efforts to identify and characterize compounds that impinge on ClpC1 activity are constrained by our limited knowledge of Clp protease function and regulation. To expand our understanding of ClpC1 physiology, we employed a coimmunoprecipitation and mass spectrometry workflow to identify proteins that interact with ClpC1 in Mycolicibacterium smegmatis, a surrogate for M. tuberculosis. We identify a diverse panel of interaction partners, many of which coimmunoprecipitate with both the regulatory N-terminal domain and the ATPase core of ClpC1. Notably, our interactome analysis establishes MSMEI_3879, a truncated gene product unique to M. smegmatis, as a novel proteolytic substrate. Degradation of MSMEI_3879 by ClpC1P1P2 requires exposure of its N-terminal sequence, reinforcing the idea that ClpC1 selectively recognizes disordered motifs on substrates. Fluorescent substrates incorporating MSMEI_3879 may be useful in screening for novel ClpC1-targeting antibiotics to help address the challenge of M. tuberculosis drug resistance. Drug-resistant tuberculosis infections are a major challenge to global public health. Much effort has been invested in identifying new drug targets in the causative pathogen, Mycobacterium tuberculosis. One such target is the ClpC1 unfoldase. Compounds have been identified that kill M. tuberculosis by disrupting ClpC1 activity, yet the physiological function of ClpC1 in cells has remained poorly defined. Here, we identify interaction partners of ClpC1 in a model mycobacterium. By building a broader understanding of the role of this prospective drug target, we can more effectively develop compounds that inhibit its essential cellular activities.
耐多药结核分枝杆菌感染的流行促使人们大力开发这种全球重要病原体的新药物靶点。ClpC1 是必需的 ClpC1P1P2 蛋白酶的解折叠酶组分,已成为一个特别有前途的抗菌药物靶点。然而,由于我们对 Clp 蛋白酶功能和调节的了解有限,识别和表征影响 ClpC1 活性的化合物的工作受到了限制。为了扩大我们对 ClpC1 生理学的理解,我们采用了免疫沉淀和质谱工作流程,以鉴定分枝杆菌中的 ClpC1 相互作用蛋白,分枝杆菌是结核分枝杆菌的替代物。我们鉴定了一组多样化的相互作用伙伴,其中许多与 ClpC1 的调节 N 端结构域和 ATP 酶核心都相互作用。值得注意的是,我们的相互作用组分析确定 MSMEI_3879 是分枝杆菌特有的截断基因产物,是一种新的蛋白水解底物。ClpC1P1P2 降解 MSMEI_3879 需要暴露其 N 端序列,这强化了 ClpC1 选择性识别底物上无规卷曲模体的观点。含有 MSMEI_3879 的荧光底物可能有助于筛选新型 ClpC1 靶向抗生素,以帮助解决结核分枝杆菌耐药性的挑战。
耐多药结核病感染对全球公共卫生是一个重大挑战。人们投入了大量精力来确定致病病原体结核分枝杆菌的新药物靶点。ClpC1 解折叠酶就是这样一个靶点。已经鉴定出一些化合物可以通过破坏 ClpC1 活性来杀死结核分枝杆菌,但 ClpC1 在细胞中的生理功能仍未得到明确界定。在这里,我们在一种模式分枝杆菌中鉴定了 ClpC1 的相互作用伙伴。通过更全面地了解这一潜在药物靶点的作用,我们可以更有效地开发抑制其重要细胞活性的化合物。