Beardslee Patrick C, Schmitz Karl R
Department of Chemistry & Biochemistry, University of Delaware, Newark DE, 19716.
Department of Biological Sciences, University of Delaware, Newark DE, 19716.
bioRxiv. 2024 Apr 12:2024.01.29.576913. doi: 10.1101/2024.01.29.576913.
All bacteria possess ATP-dependent proteases that destroy cytosolic proteins. These enzymes help cells mitigate proteotoxic stress, adapt to changing nutrient availability, regulate virulence phenotypes, and transition to pathogenic lifestyles. Moreover, ATP-dependent proteases have emerged as promising antibacterial and antivirulence targets in a variety of pathogens. The physiological roles of these proteases are largely defined by the complement of proteins that they degrade. Substrates are typically recognized in a highly selective manner, often via short unstructured sequences termed degrons. While a few degrons have been identified and rigorously characterized, we lack a systematic understanding of how proteases select valid degrons from the vast complexity of protein sequence space. Here, we describe a novel high-throughput screening approach in that couples proteolysis of a protein toxin to cell survival. We used this method to screen a combinatorial library of C-terminal pentapeptide sequences for functionality as proteolytic degrons in wild type , and in strains lacking components of the ClpXP and ClpAP proteases. By examining the competitive enrichment of sequences over time, we found that about one percent of pentapeptide tags lead to toxin proteolysis. Interestingly, the most enriched degrons were ClpXP-dependent and highly similar to the ssrA tag, one of the most extensively characterized degrons in bacteria. Among ssrA-like sequences, we observed that specific upstream residues correlate with successful recognition. The lack of diversity among strongly enriched sequences suggests that ssrA-like tags comprise a uniquely potent class of short C-terminal degron in . Efficient proteolysis of substrates lacking such degrons likely requires adaptors or multivalent interactions. These findings broaden our understanding of the constraints that shape the bacterial proteolytic landscape. Our screening approach may be broadly applicable to probing aspects of proteolytic substrate selection in other bacterial systems.
所有细菌都拥有能破坏胞质蛋白的ATP依赖性蛋白酶。这些酶帮助细胞减轻蛋白毒性应激、适应不断变化的营养可用性、调节毒力表型以及转变为致病生活方式。此外,ATP依赖性蛋白酶已成为多种病原体中颇具前景的抗菌和抗毒力靶点。这些蛋白酶的生理作用很大程度上由它们降解的蛋白质互补物所定义。底物通常以高度选择性的方式被识别,通常通过称为降解子的短无结构序列。虽然已经鉴定并严格表征了一些降解子,但我们缺乏对蛋白酶如何从蛋白质序列空间的巨大复杂性中选择有效降解子的系统理解。在这里,我们描述了一种新颖的高通量筛选方法,该方法将蛋白质毒素的蛋白水解与细胞存活联系起来。我们使用这种方法筛选了C端五肽序列的组合文库,以寻找其作为野生型以及缺乏ClpXP和ClpAP蛋白酶组分的菌株中蛋白水解降解子的功能。通过检查序列随时间的竞争性富集情况,我们发现约百分之一的五肽标签会导致毒素蛋白水解。有趣的是,最富集的降解子依赖于ClpXP,并且与ssrA标签高度相似,ssrA标签是细菌中最广泛表征的降解子之一。在类似ssrA的序列中,我们观察到特定的上游残基与成功识别相关。高度富集序列之间缺乏多样性表明,类似ssrA的标签在大肠杆菌中构成了一类独特有效的短C端降解子。缺乏此类降解子的底物的有效蛋白水解可能需要衔接子或多价相互作用。这些发现拓宽了我们对塑造细菌蛋白水解格局的限制因素的理解。我们的筛选方法可能广泛适用于探究其他细菌系统中蛋白水解底物选择的各个方面。