Suppr超能文献

支气管内注入吲哚菁绿以识别节段间平面,从而成功进行节段切除术。

Endobronchial indocyanine green instillation to identify the intersegmental plane for successful segmentectomy.

作者信息

Lilburn Paul, Kwan Jonathan, Williamson Jonathan, Ho-Shon Kevin, Azari Mohammad, Wilson Michael, Ing Alvin, Saghaie Tajalli

机构信息

Department of Respiratory and Sleep Medicine Prince of Wales Hospital Sydney New South Wales Australia.

School of Health Sciences University of New South Wales Sydney New South Wales Australia.

出版信息

Respirol Case Rep. 2023 Jun 19;11(7):e01174. doi: 10.1002/rcr2.1174. eCollection 2023 Jul.

Abstract

The traditional indications for lobectomy for resectable Non-small Cell Lung Cancer (NSCLC) may be set to change. Recently, anatomical segmentectomy (AS) versus lobectomy as an approach for early-stage NSCLC has been described in phase 3 randomised controlled trials. The demand for methods to facilitate AS may increase as a consequence. We describe three cases of AS using the combination of endobronchial infiltration of indocyanine green (ICG) to identify the intersegmental plane (critical for the performance of AS), and Computed Tomography (CT) guided methylene blue injection for lesion localisation. The operations were completed successfully demonstrating satisfactory post-operative outcomes including lesion resection with clear surgical margins and acceptable length of stay. We believe that endobronchial instillation of ICG and CT-guided methylene blue injection for lesion localisation show promise as a technique to complement parenchymal sparing thoracic oncological surgery.

摘要

可切除的非小细胞肺癌(NSCLC)肺叶切除术的传统适应证可能会发生变化。最近,在3期随机对照试验中描述了解剖性肺段切除术(AS)与肺叶切除术作为早期NSCLC的治疗方法。因此,对促进AS的方法的需求可能会增加。我们描述了3例AS病例,这些病例使用吲哚菁绿(ICG)支气管内浸润来识别肺段间平面(这对AS的实施至关重要),并结合计算机断层扫描(CT)引导下注射亚甲蓝进行病变定位。手术均成功完成,术后结果令人满意,包括病变切除且手术切缘清晰,住院时间可接受。我们认为,支气管内注入ICG和CT引导下注射亚甲蓝进行病变定位作为一种补充保留实质的胸科肿瘤手术的技术具有前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5081/10277828/d96af9acdfb6/RCR2-11-e01174-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验