Suppr超能文献

基于光谱聚焦的受激拉曼散射显微镜,采用紧凑型玻璃块实现可调色散。

Spectral focusing-based stimulated Raman scattering microscopy using compact glass blocks for adjustable dispersion.

作者信息

Gagnon Justin R, Allen Christian Harry, Trudel Dominique, Leblond Frederic, Stys Peter K, Brideau Craig, Murugkar Sangeeta

机构信息

Department of Physics, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada.

Centre de recherche du Centre hospitalier de l'Université de Montréal, Montreal, Quebec, Canada.

出版信息

Biomed Opt Express. 2023 May 4;14(6):2510-2522. doi: 10.1364/BOE.486753. eCollection 2023 Jun 1.

Abstract

Spectral focusing is a well-established technique for increasing spectral resolution in coherent Raman scattering microscopy. However, current methods for tuning optical chirp in setups using spectral focusing, such as glass rods, gratings, and prisms, are very cumbersome, time-consuming to use, and difficult to align, all of which limit more widespread use of the spectral focusing technique. Here, we report a stimulated Raman scattering (SRS) configuration which can rapidly tune optical chirp by utilizing compact adjustable-dispersion TIH53 glass blocks. By varying the height of the blocks, the number of bounces in the blocks and therefore path length of the pulses through the glass can be quickly modulated, allowing for a convenient method of adjusting chirp with almost no necessary realignment. To demonstrate the flexibility of this configuration, we characterize our system's signal-to-noise ratio and spectral resolution at different chirp values and perform imaging in both the carbon-hydrogen stretching region (MCF-7 cells) and fingerprint region (prostate cores). Our findings show that adjustable-dispersion glass blocks allow the user to effortlessly modify their optical system to suit their imaging requirements. These blocks can be used to significantly simplify and miniaturize experimental configurations utilizing spectral focusing.

摘要

光谱聚焦是一种在相干拉曼散射显微镜中提高光谱分辨率的成熟技术。然而,目前在使用光谱聚焦的装置(如玻璃棒、光栅和棱镜)中调节光学啁啾的方法非常繁琐,使用起来耗时且难以对准,所有这些都限制了光谱聚焦技术的更广泛应用。在此,我们报告一种受激拉曼散射(SRS)配置,它可以通过使用紧凑的可调色散TIH53玻璃块快速调节光学啁啾。通过改变玻璃块的高度,可以快速调制玻璃块内的反射次数以及因此脉冲在玻璃中的传播路径长度,从而提供一种几乎无需重新对准即可方便调节啁啾的方法。为了证明这种配置的灵活性,我们在不同啁啾值下表征了我们系统的信噪比和光谱分辨率,并在碳 - 氢伸缩振动区域(MCF - 7细胞)和指纹区域(前列腺组织芯)进行了成像。我们的研究结果表明,可调色散玻璃块允许用户轻松修改其光学系统以满足成像需求。这些玻璃块可用于显著简化和小型化利用光谱聚焦的实验配置。

相似文献

1
Spectral focusing-based stimulated Raman scattering microscopy using compact glass blocks for adjustable dispersion.
Biomed Opt Express. 2023 May 4;14(6):2510-2522. doi: 10.1364/BOE.486753. eCollection 2023 Jun 1.
2
Fingerprint-to-CH stretch continuously tunable high spectral resolution stimulated Raman scattering microscope.
J Biophotonics. 2019 Sep;12(9):e201900028. doi: 10.1002/jbio.201900028. Epub 2019 Jun 14.
5
Shot-Noise-Limited Two-Color Stimulated Raman Scattering Microscopy with a Balanced Detection Scheme.
J Phys Chem B. 2020 Apr 2;124(13):2591-2599. doi: 10.1021/acs.jpcb.0c01065. Epub 2020 Mar 24.
6
Spectral focusing in picosecond pulsed stimulated Raman scattering microscopy.
Biomed Opt Express. 2022 Jan 27;13(2):995-1004. doi: 10.1364/BOE.445640. eCollection 2022 Feb 1.
7
Fast vibrational imaging of single cells and tissues by stimulated Raman scattering microscopy.
Acc Chem Res. 2014 Aug 19;47(8):2282-90. doi: 10.1021/ar400331q. Epub 2014 May 28.
8
Amplitude and polarization modulated hyperspectral Stimulated Raman Scattering Microscopy.
Opt Express. 2015 Nov 2;23(22):28119-31. doi: 10.1364/OE.23.028119.
9
Frequency-Domain Low-Wavenumber Hyperspectral Stimulated Raman Scattering Microscopy.
Anal Chem. 2024 Jun 25;96(25):10341-10347. doi: 10.1021/acs.analchem.4c01298. Epub 2024 Jun 12.

引用本文的文献

1
Lipid droplets as cell fate determinants in skeletal muscle.
Trends Endocrinol Metab. 2024 Nov 28. doi: 10.1016/j.tem.2024.10.006.
2
Harnessing the power of optical microscopy for visualization and analysis of histopathological images.
Biomed Opt Express. 2023 Sep 26;14(10):5451-5465. doi: 10.1364/BOE.501893. eCollection 2023 Oct 1.
3
Investigating ionizing radiation-induced changes in breast cancer cells using stimulated Raman scattering microscopy.
J Biomed Opt. 2023 Jul;28(7):076501. doi: 10.1117/1.JBO.28.7.076501. Epub 2023 Jul 11.

本文引用的文献

1
Spectral focusing in picosecond pulsed stimulated Raman scattering microscopy.
Biomed Opt Express. 2022 Jan 27;13(2):995-1004. doi: 10.1364/BOE.445640. eCollection 2022 Feb 1.
3
Intraductal Carcinoma of the Prostate as a Cause of Prostate Cancer Metastasis: A Molecular Portrait.
Cancers (Basel). 2022 Feb 6;14(3):820. doi: 10.3390/cancers14030820.
6
Volumetric chemical imaging in vivo by a remote-focusing stimulated Raman scattering microscope.
Opt Express. 2020 Sep 28;28(20):30210-30221. doi: 10.1364/OE.404869.
7
Raman-guided subcellular pharmaco-metabolomics for metastatic melanoma cells.
Nat Commun. 2020 Sep 24;11(1):4830. doi: 10.1038/s41467-020-18376-x.
10
Coherent anti-Stokes Raman scattering imaging using silicon photomultipliers.
Opt Lett. 2020 Apr 15;45(8):2299-2302. doi: 10.1364/OL.390050.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验