Kawasaki Physicians Association, Kawasaki, Japan.
Department of Internal Medicine, Kawasaki Rinko General Hospital, Kawasaki, Japan.
J Med Virol. 2023 Jun;95(6):e28884. doi: 10.1002/jmv.28884.
Messenger ribonucleic acid (mRNA) vaccination against coronavirus disease 2019 (COVID-19) is an effective prevention strategy, despite a limited understanding of the molecular mechanisms underlying the host immune system and individual heterogeneity of the variable effects of mRNA vaccination. We assessed the time-series changes in the comprehensive gene expression profiles of 200 vaccinated healthcare workers by performing bulk transcriptome and bioinformatics analyses, including dimensionality reduction utilizing the uniform manifold approximation and projection (UMAP) technique. For these analyses, blood samples, including peripheral blood mononuclear cells (PBMCs), were collected from 214 vaccine recipients before vaccination (T1) and on Days 22 (T2, after second dose), 90, 180 (T3, before a booster dose), and 360 (T4, after a booster dose) after receiving the first dose of BNT162b2 vaccine (UMIN000043851). UMAP successfully visualized the main cluster of gene expression at each time point in PBMC samples (T1-T4). Through differentially expressed gene (DEG) analysis, we identified genes that showed fluctuating expression levels and gradual increases in expression levels from T1 to T4, as well as genes with increased expression levels at T4 alone. We also succeeded in dividing these cases into five types based on the changes in gene expression levels. High-throughput and temporal bulk RNA-based transcriptome analysis is a useful approach for inclusive, diverse, and cost-effective large-scale clinical studies.
信使核糖核酸(mRNA)疫苗接种是预防 2019 年冠状病毒病(COVID-19)的有效策略,尽管人们对宿主免疫系统的分子机制以及 mRNA 疫苗接种效果的个体异质性知之甚少。我们通过进行批量转录组和生物信息学分析,包括利用均匀流形逼近和投影(UMAP)技术进行降维,评估了 200 名接种医护人员的综合基因表达谱的时间序列变化。对于这些分析,从 214 名疫苗接种者中采集了包括外周血单核细胞(PBMC)在内的血液样本,在接种前(T1)和第 22 天(T2,第二剂后)、第 90 天、第 180 天(T3,在加强针之前)和第 360 天(T4,在加强针后)接受 BNT162b2 疫苗的第一剂后。UMAP 成功地在 PBMC 样本的每个时间点可视化了基因表达的主要聚类(T1-T4)。通过差异表达基因(DEG)分析,我们鉴定了在 T1 到 T4 期间表现出波动表达水平和逐渐增加表达水平的基因,以及仅在 T4 时表达水平增加的基因。我们还成功地根据基因表达水平的变化将这些情况分为五种类型。基于高通量和时间的批量 RNA 转录组分析是一种用于包容性、多样性和具有成本效益的大规模临床研究的有用方法。