Research center, Qtomo, Busan, South Korea.
Institute of Mathematical Sciences, Ewha Womans University, Seoul, South Korea.
Sci Rep. 2023 Jun 21;13(1):10080. doi: 10.1038/s41598-023-36813-x.
The security of the RSA cryptosystem is based on the difficulty of factoring a large number N into prime numbers [Formula: see text] and [Formula: see text] satisfying [Formula: see text]. This paper presents a prime factorization method using a D-Wave quantum computer that could threaten the RSA cryptosystem in the future. The starting point for this method is very simple, representing two prime numbers as qubits. Then, we set the difference between the product of the two prime numbers expressed in qubits and N as a cost function, and we find the solution when the cost function is minimized. D-Wave's quantum annealer can find the minimum value of any quadratic problem. However, the cost function must be a higher-order unconstrained optimization (HUBO) model because it contains second- or higher-order terms. We used a hybrid solver accessible via Leap, D-Wave's real-time quantum cloud service, and the dimod package provided by the D-Wave Ocean software development kit (SDK) to solve the HUBO problem. We also successfully factorized 102,454,763 with 26 logical qubits. In addition, we factorized 1,000,070,001,221 using the range-dependent Hamiltonian algorithm.
RSA 密码系统的安全性基于将大整数 N 分解为满足 [公式:见正文] 的两个素数 [公式:见正文] 的困难。本文提出了一种使用 D-Wave 量子计算机的素数分解方法,该方法可能会在未来对 RSA 密码系统构成威胁。该方法的出发点非常简单,将两个素数表示为量子位。然后,我们将用量子位表示的两个素数的乘积与 N 的差定义为代价函数,并在代价函数最小时找到解。D-Wave 的量子退火器可以找到任何二次问题的最小值。然而,代价函数必须是高阶无约束优化(HUBO)模型,因为它包含二阶或更高阶项。我们使用了通过 Leap 访问的混合求解器、D-Wave 的实时量子云服务和 D-Wave Ocean 软件开发工具包(SDK)提供的 dimod 包来解决 HUBO 问题。我们还成功地用 26 个逻辑量子位分解了 102454763。此外,我们还使用依赖范围的哈密顿算法分解了 1000070001221。