Department of Chemistry, University of California Irvine, Irvine, CA 92697, USA.
Chemistry Department, Skidmore College, Saratoga Springs, NY, 12866-1632, USA.
Phys Chem Chem Phys. 2023 Jul 5;25(26):17306-17319. doi: 10.1039/d3cp01520c.
Organic chromophores initiate much of daytime aqueous phase chemistry in the environment. Thus, studying the absorption spectra of commonly used organic photosensitizers is paramount to fully understand their relevance in environmental processes. In this work, we combined UV-Vis spectroscopy, H-NMR spectroscopy, quantum chemical calculations, and molecular dynamics simulations to investigate the absorption spectra of 4-benzoyl benzoic acid (4BBA), a widely used photosensitizer and a common proxy of environmentally relevant chromophores. Solutions of 4BBA at different pH values show that protonated and deprotonated species have an effect on its absorbance spectra. Theoretical calculations of these species in water clusters provide physical and chemical insights into the spectra. Quantum chemical calculations were conducted to analyze the UV-Vis absorbance spectra of 4BBA species using various cluster sizes, such as CHCOCHCOOH·(HO), where = 8 for relatively small clusters and = 30 for larger clusters. While relatively small clusters have been successfully used for smaller chromophores, our results indicate that simulations of protonated species of 4BBA require relatively larger clusters of = 30. A comparison between the experimental and theoretical results shows good agreement in the pH-dependent spectral shift between the hydrated cluster model and the experimental data. Overall, the theoretical and empirical results indicate that the experimental optical spectra of aqueous phase 4BBA can be represented by the acid-base equilibrium of the keto-forms, with a spectroscopically measured p of 3.41 ± 0.04. The results summarized here contribute to a molecular-level understanding of solvated organic molecules through calculations restricted to cluster models, and thereby, broader insight into environmentally relevant chromophores.
有机发色团引发了环境中大部分日间水相化学过程。因此,研究常用有机光敏剂的吸收光谱对于充分了解它们在环境过程中的相关性至关重要。在这项工作中,我们结合了紫外可见光谱、H-NMR 光谱、量子化学计算和分子动力学模拟,研究了广泛使用的光敏剂和常见环境相关发色团的 4-苯甲酰苯甲酸(4BBA)的吸收光谱。不同 pH 值下的 4BBA 溶液表明,质子化和去质子化物种对其吸收光谱有影响。这些物种在水团簇中的理论计算为光谱提供了物理和化学方面的见解。量子化学计算用于分析不同簇大小(例如 CHCOCHCOOH·(HO),其中 = 8 用于较小的簇, = 30 用于较大的簇)下 4BBA 物种的紫外可见吸收光谱。虽然相对较小的簇已成功用于较小的发色团,但我们的结果表明,4BBA 质子化物种的模拟需要相对较大的簇,即 = 30。实验和理论结果之间的比较表明,水合簇模型与实验数据之间的 pH 依赖性光谱位移具有良好的一致性。总的来说,理论和实验结果表明,水相 4BBA 的实验光学光谱可以通过酮式的酸碱平衡来表示,其光谱测量的 p 值为 3.41 ± 0.04。这里总结的结果通过限制在簇模型内的计算为溶剂化有机分子提供了分子水平的理解,从而更深入地了解了环境相关的发色团。