Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
Acc Chem Res. 2023 Aug 1;56(15):2051-2061. doi: 10.1021/acs.accounts.3c00086. Epub 2023 Jun 22.
Excitons are the molecular-scale currency of electronic energy. Control over excitons enables energy to be directed and harnessed for light harvesting, electronics, and sensing. Excitonic circuits achieve such control by arranging electronically active molecules to prescribe desired spatiotemporal dynamics. Photosynthetic solar energy conversion is a canonical example of the power of excitonic circuits, where chromophores are positioned in a protein scaffold to perform efficient light capture, energy transport, and charge separation. Synthetic systems that aim to emulate this functionality include self-assembled aggregates, molecular crystals, and chromophore-modified proteins. While the potential of this approach is clear, these systems lack the structural precision to control excitons or even test the limits of their power. In recent years, DNA origami has emerged as a designer material that exploits biological building blocks to construct nanoscale architectures. The structural precision afforded by DNA origami has enabled the pursuit of naturally inspired organizational principles in a highly precise and scalable manner. In this Account, we describe recent developments in DNA-based platforms that spatially organize chromophores to construct tunable excitonic systems. The high fidelity of DNA base pairing enables the formation of programmable nanoscale architectures, and sequence-specific placement allows for the precise positioning of chromophores within the DNA structure. The integration of a wide range of chromophores across the visible spectrum introduces spectral tunability. These excitonic DNA-chromophore assemblies not only serve as model systems for light harvesting, solar conversion, and sensing but also lay the groundwork for the integration of coupled chromophores into larger-scale nucleic acid architectures.We have used this approach to generate DNA-chromophore assemblies of strongly coupled delocalized excited states through both sequence-specific self-assembly and the covalent attachment of chromophores. These strategies have been leveraged to independently control excitonic coupling and system-bath interaction, which together control energy transfer. We then extended this framework to identify how scaffold configurations can steer the formation of symmetry-breaking charge transfer states, paving the way toward the design of dual light-harvesting and charge separation DNA machinery. In an orthogonal application, we used the programmability of DNA chromophore assemblies to change the optical emission properties of strongly coupled dimers, generating a series of fluorophore-modified constructs with separable emission properties for fluorescence assays. Upcoming advances in the chemical modification of nucleotides, design of large-scale DNA origami, and predictive computational methods will aid in constructing excitonic assemblies for optical and computing applications. Collectively, the development of DNA-chromophore assemblies as a platform for excitonic circuitry offers a pathway to identifying and applying design principles for light harvesting and molecular electronics.
激子是电子能量的分子级货币。对激子的控制可以使能量定向并用于光捕获、电子学和传感。激子电路通过排列电子活性分子来规定所需的时空动力学,从而实现这种控制。光合作用太阳能转换是激子电路的力量的一个典型例子,其中发色团被定位在蛋白质支架中以进行有效的光捕获、能量传输和电荷分离。旨在模拟这种功能的合成系统包括自组装聚集体、分子晶体和发色团修饰的蛋白质。虽然这种方法的潜力是显而易见的,但这些系统缺乏控制激子的结构精度,甚至无法测试其功能的极限。近年来,DNA 折纸术作为一种利用生物构建块构建纳米级结构的设计材料而出现。DNA 折纸术的结构精度使得以高度精确和可扩展的方式追求受自然启发的组织原则成为可能。在本报告中,我们描述了基于 DNA 的平台的最新进展,这些平台通过空间组织发色团来构建可调谐的激子系统。DNA 碱基配对的高保真度能够形成可编程的纳米级结构,并且序列特异性放置允许发色团在 DNA 结构内的精确定位。在可见光谱范围内集成各种发色团可引入光谱可调谐性。这些激子 DNA-发色团组装不仅作为光捕获、太阳能转换和传感的模型系统,而且为将耦合发色团集成到更大的核酸结构中奠定了基础。我们已经使用这种方法通过序列特异性自组装和发色团的共价附着生成具有强离域激发态的强耦合激子 DNA-发色团组装。这些策略已被利用来独立控制激子耦合和系统-浴相互作用,这两者共同控制能量转移。然后,我们扩展了这个框架来确定支架配置如何引导打破对称的电荷转移状态的形成,为设计双光捕获和电荷分离 DNA 机械奠定了基础。在正交应用中,我们使用 DNA 发色团组装的可编程性来改变强耦合二聚体的光学发射特性,生成一系列具有可分离荧光特性的荧光标记构建体,用于荧光分析。核苷酸的化学修饰、大规模 DNA 折纸术的设计和预测计算方法的进步将有助于构建用于光学和计算应用的激子组装。总的来说,作为激子电路平台的 DNA-发色团组装的开发为确定和应用光捕获和分子电子学的设计原则提供了途径。