Zhou Xu, Satyabola Deeksha, Liu Hao, Jiang Shuoxing, Qi Xiaodong, Yu Lu, Lin Su, Liu Yan, Woodbury Neal W, Yan Hao
Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA.
School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA.
Angew Chem Int Ed Engl. 2022 Dec 19;61(51):e202211200. doi: 10.1002/anie.202211200. Epub 2022 Nov 22.
Photosynthetic organisms organize discrete light-harvesting complexes into large-scale networks to facilitate efficient light collection and utilization. Inspired by nature, herein, synthetic DNA templates were used to direct the formation of dye aggregates with a cyanine dye, K21, into discrete branched photonic complexes, and two-dimensional (2D) excitonic networks. The DNA templates ranged from four-arm DNA tiles, ≈10 nm in each arm, to 2D wireframe DNA origami nanostructures with different geometries and varying dimensions up to 100×100 nm. These DNA-templated dye aggregates presented strongly coupled spectral features and delocalized exciton characteristics, enabling efficient photon collection and energy transfer. Compared to the discrete branched photonic systems templated on individual DNA tiles, the interconnected excitonic networks showed approximately a 2-fold increase in energy transfer efficiency. This bottom-up assembly strategy paves the way to create 2D excitonic systems with complex geometries and engineered energy pathways.
光合生物将离散的光捕获复合物组织成大规模网络,以促进高效的光收集和利用。受自然启发,本文使用合成DNA模板将花青染料K21形成染料聚集体,构建离散的分支光子复合物和二维(2D)激子网络。DNA模板范围从每个臂约10 nm的四臂DNA瓦片,到具有不同几何形状和高达100×100 nm不同尺寸的二维线框DNA折纸纳米结构。这些DNA模板化的染料聚集体呈现出强耦合光谱特征和离域激子特性,实现了高效的光子收集和能量转移。与以单个DNA瓦片为模板的离散分支光子系统相比,相互连接的激子网络的能量转移效率提高了约2倍。这种自下而上的组装策略为创建具有复杂几何形状和工程化能量路径的二维激子系统铺平了道路。