Suppr超能文献

BatTS:一种优化深度前馈神经网络的混合方法。

BatTS: a hybrid method for optimizing deep feedforward neural network.

作者信息

Pan Sichen, Gupta Tarun Kumar, Raza Khalid

机构信息

School of Computer Science and Technology, Guangdong University of Technology, Guangzhou, Guangdong Province, China.

Department of Computer Science, Jamia Millia Islamia, New Delhi, Delhi, India.

出版信息

PeerJ Comput Sci. 2023 Jan 10;9:e1194. doi: 10.7717/peerj-cs.1194. eCollection 2023.

Abstract

Deep feedforward neural networks (DFNNs) have attained remarkable success in almost every computational task. However, the selection of DFNN architecture is still based on handcraft or hit-and-trial methods. Therefore, an essential factor regarding DFNN is about designing its architecture. Unfortunately, creating architecture for DFNN is a very laborious and time-consuming task for performing state-of-art work. This article proposes a new hybrid methodology (BatTS) to optimize the DFNN architecture based on its performance. BatTS is a result of integrating the Bat algorithm, Tabu search (TS), and Gradient descent with a momentum backpropagation training algorithm (GDM). The main features of the BatTS are the following: a dynamic process of finding new architecture based on Bat, the skill to escape from local minima, and fast convergence in evaluating new architectures based on the Tabu search feature. The performance of BatTS is compared with the Tabu search based approach and random trials. The process goes through an empirical evaluation of four different benchmark datasets and shows that the proposed hybrid methodology has improved performance over existing techniques which are mainly random trials.

摘要

深度前馈神经网络(DFNNs)在几乎每一项计算任务中都取得了显著成功。然而,DFNN架构的选择仍然基于手工或反复试验的方法。因此,关于DFNN的一个关键因素是其架构设计。不幸的是,为DFNN创建架构对于开展前沿工作来说是一项非常费力且耗时的任务。本文提出了一种新的混合方法(BatTS),以根据DFNN的性能优化其架构。BatTS是将蝙蝠算法、禁忌搜索(TS)和带有动量反向传播训练算法(GDM)的梯度下降相结合的结果。BatTS的主要特点如下:基于蝙蝠算法寻找新架构的动态过程、逃离局部最小值的能力以及基于禁忌搜索特性在评估新架构时的快速收敛。将BatTS的性能与基于禁忌搜索的方法和随机试验进行了比较。该过程对四个不同的基准数据集进行了实证评估,结果表明,所提出的混合方法比主要为随机试验的现有技术具有更高的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5746/10280266/420bbeeecc30/peerj-cs-09-1194-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验