Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China.
State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.
Microbiol Spectr. 2023 Aug 17;11(4):e0028823. doi: 10.1128/spectrum.00288-23. Epub 2023 Jun 22.
The evolutionary relationship between arginine and lysine biosynthetic pathways has been well established in bacteria and hyperthermophilic archaea but remains largely unknown in haloarchaea. Here, the endogenous CRISPR-Cas system was harnessed to edit arginine and lysine biosynthesis-related genes in the haloarchaeon Natrinema gari J7-2. The Δ, Δ, Δ, and Δ mutant strains display an arginine auxotrophic phenotype, while the Δ mutant shows a lysine auxotrophic phenotype, suggesting that strain J7-2 utilizes the ArgW-mediated pathway and the diaminopimelate (DAP) pathway to synthesize arginine and lysine, respectively. Unlike the ArgD in Escherichia coli acting as a bifunctional aminotransferase in both the arginine biosynthesis pathway and the DAP pathway, the ArgD in strain J7-2 participates only in arginine biosynthesis. Meanwhile, in strain J7-2, the function of cannot be compensated for by its evolutionary counterpart in the DAP pathway. Moreover, strain J7-2 cannot utilize α-aminoadipate (AAA) to synthesize lysine via the ArgW-mediated pathway, in contrast to hyperthermophilic archaea that employ a bifunctional LysW-mediated pathway to synthesize arginine (or ornithine) and lysine from glutamate and AAA, respectively. Additionally, the replacement of a 5-amino-acid signature motif responsible for substrate specificity of strain J7-2 ArgX with that of its hyperthermophilic archaeal homologs cannot endow the Δ mutant with the ability to biosynthesize lysine from AAA. The analysis shows that strain J7-2 ArgX acts on glutamate rather than AAA. These results suggest that the arginine and lysine biosynthetic pathways of strain J7-2 are highly specialized during evolution. Due to their roles in amino acid metabolism and close evolutionary relationship, arginine and lysine biosynthetic pathways represent interesting models for probing functional specialization of metabolic routes. The current knowledge with respect to arginine and lysine biosynthesis is limited for haloarchaea compared to that for bacteria and hyperthermophilic archaea. Our results demonstrate that the haloarchaeon Natrinema gari J7-2 employs the ArgW-mediated pathway and the DAP pathway for arginine and lysine biosynthesis, respectively, and the two pathways are functionally independent of each other; meanwhile, ArgX is a key determinant of substrate specificity of the ArgW-mediated pathway in strain J7-2. This study provides new clues about haloarchaeal amino acid metabolism and confirms the convenience and efficiency of endogenous CRISPR-Cas system-based genome editing in haloarchaea.
在细菌和嗜热古菌中,精氨酸和赖氨酸生物合成途径之间的进化关系已得到充分确立,但在盐杆菌中仍然知之甚少。在这里,内源性 CRISPR-Cas 系统被用来编辑嗜盐古菌 Natrinema gari J7-2 中与精氨酸和赖氨酸生物合成相关的基因。Δ、Δ、Δ 和 Δ 突变株表现出精氨酸营养缺陷表型,而 Δ 突变株表现出赖氨酸营养缺陷表型,表明 J7-2 菌株分别利用 ArgW 介导的途径和二氨基庚二酸(DAP)途径合成精氨酸和赖氨酸。与大肠杆菌中的 ArgD 在精氨酸生物合成途径和 DAP 途径中均作为双功能氨基转移酶不同,J7-2 菌株中的 ArgD 仅参与精氨酸生物合成。同时,在 J7-2 菌株中,无法通过进化对应的 在 DAP 途径中补偿 的功能。此外,J7-2 菌株不能利用 α-氨基己二酸(AAA)通过 ArgW 介导的途径合成赖氨酸,而与嗜热古菌相反,嗜热古菌利用双功能 LysW 介导的途径分别从谷氨酸和 AAA 合成精氨酸(或鸟氨酸)和赖氨酸。此外,用其嗜热古菌同源物的 5 个氨基酸特征基序替换负责 J7-2 ArgX 底物特异性的基序,不能赋予 Δ 突变株从 AAA 生物合成赖氨酸的能力。 分析表明,J7-2 ArgX 作用于谷氨酸而不是 AAA。这些结果表明,J7-2 菌株的精氨酸和赖氨酸生物合成途径在进化过程中高度专业化。由于它们在氨基酸代谢中的作用和密切的进化关系,精氨酸和赖氨酸生物合成途径是研究代谢途径功能专业化的有趣模型。与细菌和嗜热古菌相比,目前关于盐杆菌精氨酸和赖氨酸生物合成的知识有限。我们的结果表明,嗜盐古菌 Natrinema gari J7-2 分别利用 ArgW 介导的途径和 DAP 途径进行精氨酸和赖氨酸的生物合成,并且这两个途径彼此功能独立;同时,ArgX 是 J7-2 菌株 ArgW 介导的途径中底物特异性的关键决定因素。这项研究为盐杆菌的氨基酸代谢提供了新线索,并证实了内源性 CRISPR-Cas 系统在盐杆菌中的基因组编辑的便利性和高效性。