Li Yingjun, Peng Nan
State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.
Front Microbiol. 2019 Oct 25;10:2471. doi: 10.3389/fmicb.2019.02471. eCollection 2019.
CRISPR-Cas systems adapt "memories" spacers from viruses and plasmids to develop adaptive immunity against mobile genetic elements. Mature CRISPR RNAs guide CRISPR-associated nucleases to site-specifically cleave target DNA or RNA, providing an efficient genome engineering tool for organisms of all three kingdoms. Cas9, Cas12, and Cas13 are single proteins with multiple domains that are the most widely used CRISPR nucleases of the Class 2 system. However, these CRISPR endonucleases are large in size, leading to difficulty for manipulation and toxicity for cells. Most archaeal genomes and half of the bacterial genomes encode different types of CRISPR-Cas systems. Therefore, developing endogenous CRISPR-Cas systems-based genome editing will simplify manipulations and increase editing efficiency in prokaryotic cells. Here, we review the current applications and discuss the prospects of using endogenous CRISPR nucleases for genome engineering and CRISPR-based antimicrobials.
CRISPR-Cas系统从病毒和质粒中获取“记忆”间隔序列,以产生针对移动遗传元件的适应性免疫。成熟的CRISPR RNA引导CRISPR相关核酸酶对靶DNA或RNA进行位点特异性切割,为所有三个生物界的生物体提供了一种高效的基因组工程工具。Cas9、Cas12和Cas13是具有多个结构域的单一蛋白质,是2类系统中使用最广泛的CRISPR核酸酶。然而,这些CRISPR内切核酸酶体积较大,导致操作困难且对细胞有毒性。大多数古菌基因组和一半的细菌基因组编码不同类型的CRISPR-Cas系统。因此,开发基于内源性CRISPR-Cas系统的基因组编辑将简化原核细胞中的操作并提高编辑效率。在这里,我们综述了当前的应用,并讨论了使用内源性CRISPR核酸酶进行基因组工程和基于CRISPR的抗菌剂的前景。