Zhang Yuhang, Tian Shishun, Liao Muxin, Hua Guoguang, Zou Wenbin, Xu Chen
IEEE Trans Image Process. 2023;32:5031-5045. doi: 10.1109/TIP.2023.3287506. Epub 2023 Sep 8.
Semantic segmentation assigns a category for each pixel and has achieved great success in a supervised manner. However, it fails to generalize well in new domains due to the domain gap. Domain adaptation is a popular way to solve this issue, but it needs target data and cannot handle unavailable domains. In domain generalization (DG), the model is trained without the target data and DG aims to generalize well in new unavailable domains. Recent works reveal that shape recognition is beneficial for generalization but still lack exploration in semantic segmentation. Meanwhile, the object shapes also exist a discrepancy in different domains, which is often ignored by the existing works. Thus, we propose a Shape-Invariant Learning (SIL) framework to focus on learning shape-invariant representation for better generalization. Specifically, we first define the structural edge, which considers both the object boundary and the inner structure of the object to provide more discrimination cues. Then, a shape perception learning strategy including a texture feature discrepancy reduction loss and a structural feature discrepancy enlargement loss is proposed to enhance the shape perception ability of the model by embedding the structural edge as a shape prior. Finally, we use shape deformation augmentation to generate samples with the same content and different shapes. Essentially, our SIL framework performs implicit shape distribution alignment at the domain-level to learn shape-invariant representation. Extensive experiments show that our SIL framework achieves state-of-the-art performance.
语义分割为每个像素分配一个类别,并在监督方式下取得了巨大成功。然而,由于域差距,它在新领域中不能很好地泛化。域适应是解决此问题的一种流行方法,但它需要目标数据,并且无法处理不可用的域。在域泛化(DG)中,模型在没有目标数据的情况下进行训练,并且DG旨在在新的不可用域中很好地泛化。最近的工作表明,形状识别有助于泛化,但在语义分割中仍缺乏探索。同时,不同域中的物体形状也存在差异,这一点在现有工作中常常被忽略。因此,我们提出了一种形状不变学习(SIL)框架,专注于学习形状不变表示以实现更好的泛化。具体来说,我们首先定义结构边缘,它同时考虑物体边界和物体内部结构以提供更多判别线索。然后,提出一种形状感知学习策略,包括纹理特征差异减少损失和结构特征差异扩大损失,通过将结构边缘作为形状先验嵌入来增强模型的形状感知能力。最后,我们使用形状变形增强来生成具有相同内容但不同形状的样本。本质上,我们的SIL框架在域级别执行隐式形状分布对齐以学习形状不变表示。大量实验表明,我们的SIL框架实现了当前最优的性能。