Suppr超能文献

用于可泛化医学图像分割的不变内容表示

Invariant Content Representation for Generalizable Medical Image Segmentation.

作者信息

Cheng Zhiming, Wang Shuai, Gao Yuhan, Zhu Zunjie, Yan Chenggang

机构信息

School of Automation, Hangzhou Dianzi University, Hangzhou, 310018, China.

School of Cyberspace, Hangzhou Dianzi University, Hangzhou, 310018, China.

出版信息

J Imaging Inform Med. 2024 Dec;37(6):3193-3207. doi: 10.1007/s10278-024-01088-9. Epub 2024 May 17.

Abstract

Domain generalization (DG) for medical image segmentation due to privacy preservation prefers learning from a single-source domain and expects good robustness on unseen target domains. To achieve this goal, previous methods mainly use data augmentation to expand the distribution of samples and learn invariant content from them. However, most of these methods commonly perform global augmentation, leading to limited augmented sample diversity. In addition, the style of the augmented image is more scattered than the source domain, which may cause the model to overfit the style of the source domain. To address the above issues, we propose an invariant content representation network (ICRN) to enhance the learning of invariant content and suppress the learning of variability styles. Specifically, we first design a gamma correction-based local style augmentation (LSA) to expand the distribution of samples by augmenting foreground and background styles, respectively. Then, based on the augmented samples, we introduce invariant content learning (ICL) to learn generalizable invariant content from both augmented and source-domain samples. Finally, we design domain-specific batch normalization (DSBN) based style adversarial learning (SAL) to suppress the learning of preferences for source-domain styles. Experimental results show that our proposed method improves by 8.74% and 11.33% in overall dice coefficient (Dice) and reduces 15.88 mm and 3.87 mm in overall average surface distance (ASD) on two publicly available cross-domain datasets, Fundus and Prostate, compared to the state-of-the-art DG methods. The code is available at https://github.com/ZMC-IIIM/ICRN-DG .

摘要

由于隐私保护的原因,医学图像分割中的域泛化(DG)更倾向于从单一源域进行学习,并期望在未见的目标域上具有良好的鲁棒性。为了实现这一目标,先前的方法主要使用数据增强来扩展样本的分布并从中学习不变的内容。然而,这些方法大多进行全局增强,导致增强样本的多样性有限。此外,增强图像的风格比源域更加分散,这可能导致模型过度拟合源域的风格。为了解决上述问题,我们提出了一种不变内容表示网络(ICRN),以增强对不变内容的学习并抑制对可变风格的学习。具体来说,我们首先设计了一种基于伽马校正的局部风格增强(LSA),通过分别增强前景和背景风格来扩展样本的分布。然后,基于增强后的样本,我们引入不变内容学习(ICL),从增强样本和源域样本中学习可泛化的不变内容。最后,我们设计了基于特定域批量归一化(DSBN)的风格对抗学习(SAL),以抑制对源域风格偏好的学习。实验结果表明,与最先进的DG方法相比,我们提出的方法在两个公开可用的跨域数据集Fundus和Prostate上,总体骰子系数(Dice)提高了8.74%和11.33%,总体平均表面距离(ASD)减少了15.88毫米和3.87毫米。代码可在https://github.com/ZMC-IIIM/ICRN-DG获取。

相似文献

1
Invariant Content Representation for Generalizable Medical Image Segmentation.
J Imaging Inform Med. 2024 Dec;37(6):3193-3207. doi: 10.1007/s10278-024-01088-9. Epub 2024 May 17.
2
Dynamic domain generalization for medical image segmentation.
Neural Netw. 2025 Apr;184:107073. doi: 10.1016/j.neunet.2024.107073. Epub 2024 Dec 26.
3
CDDSA: Contrastive domain disentanglement and style augmentation for generalizable medical image segmentation.
Med Image Anal. 2023 Oct;89:102904. doi: 10.1016/j.media.2023.102904. Epub 2023 Jul 18.
4
UniAda: Domain Unifying and Adapting Network for Generalizable Medical Image Segmentation.
IEEE Trans Med Imaging. 2025 May;44(5):1988-2001. doi: 10.1109/TMI.2024.3523319. Epub 2025 May 2.
5
Style mixup enhanced disentanglement learning for unsupervised domain adaptation in medical image segmentation.
Med Image Anal. 2025 Apr;101:103440. doi: 10.1016/j.media.2024.103440. Epub 2024 Dec 30.
6
Improving domain generalization performance for medical image segmentation via random feature augmentation.
Methods. 2023 Oct;218:149-157. doi: 10.1016/j.ymeth.2023.08.003. Epub 2023 Aug 10.
7
Generalizing Deep Learning for Medical Image Segmentation to Unseen Domains via Deep Stacked Transformation.
IEEE Trans Med Imaging. 2020 Jul;39(7):2531-2540. doi: 10.1109/TMI.2020.2973595. Epub 2020 Feb 12.
8
Adaptive wavelet-VNet for single-sample test time adaptation in medical image segmentation.
Med Phys. 2024 Dec;51(12):8865-8881. doi: 10.1002/mp.17423. Epub 2024 Oct 1.
10
AADG: Automatic Augmentation for Domain Generalization on Retinal Image Segmentation.
IEEE Trans Med Imaging. 2022 Dec;41(12):3699-3711. doi: 10.1109/TMI.2022.3193146. Epub 2022 Dec 2.

本文引用的文献

1
A Domain-Shift Invariant CNN Framework for Cardiac MRI Segmentation Across Unseen Domains.
J Digit Imaging. 2023 Oct;36(5):2148-2163. doi: 10.1007/s10278-023-00873-2. Epub 2023 Jul 10.
2
Medical image data augmentation: techniques, comparisons and interpretations.
Artif Intell Rev. 2023 Mar 20:1-45. doi: 10.1007/s10462-023-10453-z.
3
A Unified User-Generic Framework for Myoelectric Pattern Recognition: Mix-Up and Adversarial Training for Domain Generalization and Adaptation.
IEEE Trans Biomed Eng. 2023 Aug;70(8):2248-2257. doi: 10.1109/TBME.2023.3239687. Epub 2023 Jul 18.
4
Evaluation of denoising techniques to remove speckle and Gaussian noise from dermoscopy images.
Comput Biol Med. 2023 Jan;152:106474. doi: 10.1016/j.compbiomed.2022.106474. Epub 2022 Dec 21.
5
Causality-Inspired Single-Source Domain Generalization for Medical Image Segmentation.
IEEE Trans Med Imaging. 2023 Apr;42(4):1095-1106. doi: 10.1109/TMI.2022.3224067. Epub 2023 Apr 3.
6
Privacy-Preserving Domain Adaptation for Motor Imagery-Based Brain-Computer Interfaces.
IEEE Trans Biomed Eng. 2022 Nov;69(11):3365-3376. doi: 10.1109/TBME.2022.3168570. Epub 2022 Oct 19.
7
Domain Adaptation for Medical Image Analysis: A Survey.
IEEE Trans Biomed Eng. 2022 Mar;69(3):1173-1185. doi: 10.1109/TBME.2021.3117407. Epub 2022 Feb 18.
8
Align and Pool for EEG Headset Domain Adaptation (ALPHA) to Facilitate Dry Electrode Based SSVEP-BCI.
IEEE Trans Biomed Eng. 2022 Feb;69(2):795-806. doi: 10.1109/TBME.2021.3105331. Epub 2022 Jan 20.
9
Augmenting Transfer Learning with Feature Extraction Techniques for Limited Breast Imaging Datasets.
J Digit Imaging. 2021 Jun;34(3):618-629. doi: 10.1007/s10278-021-00456-z. Epub 2021 May 10.
10
Uncertainty-aware domain alignment for anatomical structure segmentation.
Med Image Anal. 2020 Aug;64:101732. doi: 10.1016/j.media.2020.101732. Epub 2020 Jun 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验