Suppr超能文献

SMILE:具有不平衡标注的核分割和分类的成本敏感多任务学习。

SMILE: Cost-sensitive multi-task learning for nuclear segmentation and classification with imbalanced annotations.

机构信息

School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China; Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China; Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, Guangdong 510080, China.

Software Engineering Institute, East China Normal University, Shanghai 200062, China.

出版信息

Med Image Anal. 2023 Aug;88:102867. doi: 10.1016/j.media.2023.102867. Epub 2023 Jun 12.

Abstract

High throughput nuclear segmentation and classification of whole slide images (WSIs) is crucial to biological analysis, clinical diagnosis and precision medicine. With the advances of CNN algorithms and the continuously growing datasets, considerable progress has been made in nuclear segmentation and classification. However, few works consider how to reasonably deal with nuclear heterogeneity in the following two aspects: imbalanced data distribution and diversified morphology characteristics. The minority classes might be dominated by the majority classes due to the imbalanced data distribution and the diversified morphology characteristics may lead to fragile segmentation results. In this study, a cost-Sensitive MultI-task LEarning (SMILE) framework is conducted to tackle the data heterogeneity problem. Based on the most popular multi-task learning backbone in nuclei segmentation and classification, we propose a multi-task correlation attention (MTCA) to perform feature interaction of multiple high relevant tasks to learn better feature representation. A cost-sensitive learning strategy is proposed to solve the imbalanced data distribution by increasing the penalization for the error classification of the minority classes. Furthermore, we propose a novel post-processing step based on the coarse-to-fine marker-controlled watershed scheme to alleviate fragile segmentation when nuclei are with large size and unclear contour. Extensive experiments show that the proposed method achieves state-of-the-art performances on CoNSeP and MoNuSAC 2020 datasets. The code is available at: https://github.com/panxipeng/nuclear_segandcls.

摘要

高通量核分割和全玻片图像 (WSI) 的分类对于生物分析、临床诊断和精准医学至关重要。随着卷积神经网络算法的进步和不断增长的数据集,核分割和分类已经取得了相当大的进展。然而,很少有工作考虑如何合理地处理核异质性在以下两个方面:数据分布不平衡和形态特征多样化。由于数据分布不平衡和形态特征多样化,少数类可能会被多数类主导,这可能导致分割结果不稳定。在本研究中,我们提出了一个基于代价敏感多任务学习(SMILE)框架来解决数据异质性问题。基于核分割和分类中最流行的多任务学习骨干网络,我们提出了一种多任务相关注意力(MTCA)来执行多个高相关任务的特征交互,以学习更好的特征表示。通过增加对少数类错误分类的惩罚,提出了一种代价敏感学习策略来解决数据分布不平衡的问题。此外,我们提出了一种新的基于粗到精标记控制分水岭方案的后处理步骤,以减轻当核具有大尺寸和不清晰轮廓时的脆弱分割。广泛的实验表明,所提出的方法在 CoNSeP 和 MoNuSAC 2020 数据集上取得了最先进的性能。代码可在:https://github.com/panxipeng/nuclear_segandcls 获得。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验