State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, China.
State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, China.
Comput Biol Med. 2023 Sep;163:107149. doi: 10.1016/j.compbiomed.2023.107149. Epub 2023 Jun 10.
Feature pyramid networks (FPNs) are widely used in the existing deep detection models to help them utilize multi-scale features. However, there exist two multi-scale feature fusion problems for the FPN-based deep detection models in medical image detection tasks: insufficient multi-scale feature fusion and the same importance for multi-scale features. Therefore, in this work, we propose a new enhanced backbone model, EFPNs, to overcome these problems and help the existing FPN-based detection models to achieve much better medical image detection performances. We first introduce an additional top-down pyramid to help the detection networks fuse deeper multi-scale information; then, a scale enhancement module is developed to use different sizes of kernels to generate more diverse multi-scale features. Finally, we propose a feature fusion attention module to estimate and assign different importance weights to features with different depths and scales. Extensive experiments are conducted on two public lesion detection datasets for different medical image modalities (X-ray and MRI). On the mAP and mR evaluation metrics, EFPN-based Faster R-CNNs improved 1.55% and 4.3% on the PenD (X-ray) dataset, and 2.74% and 3.1% on the BraTs (MRI) dataset, respectively. EFPN-based Faster R-CNNs achieve much better performances than the state-of-the-art baselines in medical image detection tasks. The proposed three improvements are all essential and effective for EFPNs to achieve superior performances; and besides Faster R-CNNs, EFPNs can be easily applied to other deep models to significantly enhance their performances in medical image detection tasks.
特征金字塔网络(FPN)广泛应用于现有的深度检测模型中,以帮助它们利用多尺度特征。然而,基于 FPN 的深度检测模型在医学图像检测任务中存在两个多尺度特征融合问题:多尺度特征融合不足和多尺度特征同等重要。因此,在这项工作中,我们提出了一种新的增强型骨干模型 EFPNs,以克服这些问题,并帮助现有的基于 FPN 的检测模型在医学图像检测任务中取得更好的性能。我们首先引入了一个额外的自上而下的金字塔,以帮助检测网络融合更深层次的多尺度信息;然后,开发了一个尺度增强模块,使用不同大小的核生成更多样化的多尺度特征。最后,我们提出了一个特征融合注意力模块,以估计和分配具有不同深度和尺度的特征的不同重要性权重。我们在两个不同医学图像模态(X 射线和 MRI)的公共病变检测数据集上进行了广泛的实验。在 mAP 和 mR 评价指标上,基于 EFPN 的 Faster R-CNN 在 PenD(X 射线)数据集上分别提高了 1.55%和 4.3%,在 BraTs(MRI)数据集上分别提高了 2.74%和 3.1%。基于 EFPN 的 Faster R-CNN 在医学图像检测任务中的性能明显优于最先进的基线。所提出的三个改进对于 EFPNs 实现卓越的性能都是至关重要和有效的;除了 Faster R-CNN 之外,EFPNs 还可以很容易地应用于其他深度模型,显著提高它们在医学图像检测任务中的性能。