Suppr超能文献

多尺度特征金字塔融合网络在医学图像分割中的应用。

Multi-scale feature pyramid fusion network for medical image segmentation.

机构信息

Power Systems Engineering Research Center, Ministry of Education, College of Big Data and Information Engineering, Guizhou University, Guiyang, 550025, China.

Frontier Institute of Chip and System, Fudan University, Shanghai, 200433, China.

出版信息

Int J Comput Assist Radiol Surg. 2023 Feb;18(2):353-365. doi: 10.1007/s11548-022-02738-5. Epub 2022 Aug 30.

Abstract

PURPOSE

Medical image segmentation is the most widely used technique in diagnostic and clinical research. However, accurate segmentation of target organs from blurred border regions and low-contrast adjacent organs in Computed tomography (CT) imaging is crucial for clinical diagnosis and treatment.

METHODS

In this article, we propose a Multi-Scale Feature Pyramid Fusion Network (MS-Net) based on the codec structure formed by the combination of Multi-Scale Attention Module (MSAM) and Stacked Feature Pyramid Module (SFPM). Among them, MSAM is used to skip connections, which aims to extract different levels of context details by dynamically adjusting the receptive fields under different network depths; the SFPM including multi-scale strategies and multi-layer Feature Perception Module (FPM) is nested in the network at the deepest point, which aims to better focus the network's attention on the target organ by adaptively increasing the weight of the features of interest.

RESULTS

Experiments demonstrate that the proposed MS-Net significantly improved the Dice score from 91.74% to 94.54% on CHAOS, from 97.59% to 98.59% on Lung, and from 82.55% to 86.06% on ISIC 2018, compared with U-Net. Additionally, comparisons with other six state-of-the-art codec structures also show the presented network has great advantages on evaluation indicators such as Miou, Dice, ACC and AUC.

CONCLUSION

The experimental results show that both the MSAM and SFPM techniques proposed in this paper can assist the network to improve the segmentation effect, so that the proposed MS-Net method achieves better results in the CHAOS, Lung and ISIC 2018 segmentation tasks.

摘要

目的

医学图像分割是诊断和临床研究中最广泛使用的技术。然而,在计算机断层扫描(CT)成像中,从模糊边界区域和对比度低的相邻器官准确分割目标器官对于临床诊断和治疗至关重要。

方法

在本文中,我们提出了一种基于编解码器结构的多尺度特征金字塔融合网络(MS-Net),该结构由多尺度注意力模块(MSAM)和堆叠特征金字塔模块(SFPM)的组合形成。其中,MSAM 用于跳跃连接,旨在通过动态调整不同网络深度下的感受野来提取不同层次的上下文细节;SFPM 包括多尺度策略和多层特征感知模块(FPM),嵌套在网络的最深层,旨在通过自适应地增加感兴趣特征的权重,更好地将网络的注意力集中在目标器官上。

结果

实验表明,与 U-Net 相比,所提出的 MS-Net 显著提高了 CHAOS 上的 Dice 评分,从 91.74%提高到 94.54%,提高了 Lung 上的 Dice 评分,从 97.59%提高到 98.59%,提高了 ISIC 2018 上的 Dice 评分,从 82.55%提高到 86.06%。此外,与其他六个最先进的编解码器结构的比较也表明,所提出的网络在 Miou、Dice、ACC 和 AUC 等评估指标上具有很大的优势。

结论

实验结果表明,本文提出的 MSAM 和 SFPM 技术都可以帮助网络提高分割效果,从而使所提出的 MS-Net 方法在 CHAOS、Lung 和 ISIC 2018 分割任务中取得更好的结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验