Suppr超能文献

多元分析富营养化垃圾填埋场群落,深入了解低密度聚乙烯降解过程中群落结构的扰动和功能。

Multivariate analysis of enriched landfill soil consortia provide insight on the community structural perturbation and functioning during low-density polyethylene degradation.

机构信息

Department of Environmental Sciences, College of Agriculture and Environmental Sciences, University of South Africa (UNISA), Florida Campus, Roodepoort 1709, South Africa.

Department of Environmental Sciences, College of Agriculture and Environmental Sciences, University of South Africa (UNISA), Florida Campus, Roodepoort 1709, South Africa.

出版信息

Microbiol Res. 2023 Sep;274:127425. doi: 10.1016/j.micres.2023.127425. Epub 2023 Jun 14.

Abstract

Plastic-enriched sites like landfills have immense potential for discovery of microbial consortia that can efficiently degrade plastics. In this study, we used a combination of culture enrichment, high-throughput PacBio sequencing of 16 S rRNA and the ITS gene, Fourier transform infrared (FTIR), and scanning electron microscopy (SEM) to examine the compositional and diversity perturbations of bacterial and fungal consortia from landfill soils and their impact on low-density polyethylene (LDPE) film biodegradation over a 90-day period. Results showed that enrichment cultures effectively utilized LDPE as a carbon source for cellular growth, resulting in significant weight reduction (22.4% and 55.6%) in the films. SEM analysis revealed marked changes in the micrometric surface characteristics (cracks, fissures, and erosion) and biofilm formation in LDPE films. FTIR analyses suggested structural and functional group modification related to C-H (2831-2943 cm⁻¹), and CH₂ (1400 cm⁻¹) stretching, CO and CC (680-950 cm⁻¹) scission, and CO incorporation (3320-3500 cm⁻¹) into the carbon backbone, indicative of LDPE polymer biodegradation. Enrichment cultures had lower diversity and richness of microbial taxa compared to soil samples, with LDPE as a carbon source having a direct influence on the structure and functioning of the microbial consortia. A total of 26 bacterial and 12 fungal OTU exhibiting high relative abundance and significant associations (IndVal > 0.7, q < 0.05) were identified in the enrichment culture. Bacterial taxa such as unclassified Parvibaculum FJ375498, Achromobacter xylosoxidans, unclassified Chitinophagaceae PAC002331, unclassified Paludisphaera and unclassified Comamonas JX898122, and six fungal species (Galactomyces candidus, Trichosporon chiropterorum, Aspergillus fumigatus, Penicillium chalabudae, Talaromyces thailandensis, and Penicillium citreosulfuratum) were identified as the putative LDPE degraders in the enrichment microbial consortium cultures. PICRUSt2 metagenomic functional profiling of taxonomic bacterial taxa abundances in both landfill soil and enrichment microbial consortia also revealed differential enrichment of energy production, stress tolerance, surface attachment and motility pathways, and xenobiotic degrading enzymes important for biofilm formation and hydrolytic/oxidative LDPE biodegradation. The findings shed light on the composition and structural changes in landfill soil microbial consortia during enrichment with LDPE as a carbon source and suggest novel LDPE-degrading bacterial and fungal taxa that could be explored for management of polyethylene pollution.

摘要

富含塑料的场地,如垃圾填埋场,具有发现能够有效降解塑料的微生物群落的巨大潜力。在这项研究中,我们使用了组合培养富集、高通量 PacBio 测序 16S rRNA 和 ITS 基因、傅里叶变换红外(FTIR)和扫描电子显微镜(SEM)来研究垃圾填埋场土壤中细菌和真菌群落的组成和多样性扰动及其对低密度聚乙烯(LDPE)薄膜生物降解的影响在 90 天内。结果表明,富集培养物有效地将 LDPE 用作细胞生长的碳源,导致薄膜的重量显著减轻(22.4%和 55.6%)。SEM 分析显示 LDPE 薄膜的微观表面特征(裂缝、裂隙和侵蚀)和生物膜形成发生了明显变化。FTIR 分析表明与 C-H(2831-2943 cm⁻¹)、CH₂(1400 cm⁻¹)拉伸、CO 和 CC(680-950 cm⁻¹)断裂以及 CO 掺入(3320-3500 cm⁻¹)到碳骨架有关的结构和功能基团修饰,表明 LDPE 聚合物的生物降解。与土壤样本相比,富集培养物中的微生物分类群的多样性和丰富度较低,而 LDPE 作为碳源直接影响微生物群落的结构和功能。在富集培养物中鉴定出了 26 个细菌和 12 个真菌 OTU,它们表现出高相对丰度和显著相关性(IndVal > 0.7,q < 0.05)。细菌分类群,如未分类的 Parvibaculum FJ375498、Achromobacter xylosoxidans、未分类的 Chitinophagaceae PAC002331、未分类的 Paludisphaera 和未分类的 Comamonas JX898122,以及六种真菌物种(Galactomyces candidus、Trichosporon chiropterorum、Aspergillus fumigatus、Penicillium chalabudae、Talaromyces thailandensis 和 Penicillium citreosulfuratum)被鉴定为富集微生物共培养物中 LDPE 的潜在降解菌。基于分类细菌分类群丰度的 PICRUSt2 宏基因组功能分析在垃圾填埋场土壤和富集微生物群落中也揭示了与能量产生、应激耐受、表面附着和运动途径以及对生物膜形成和水解/氧化 LDPE 生物降解重要的异生物质降解酶的差异富集。这些发现揭示了在以 LDPE 为碳源进行富集过程中垃圾填埋场土壤微生物群落的组成和结构变化,并提出了可能用于管理聚乙烯污染的新型 LDPE 降解细菌和真菌分类群。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验