Suppr超能文献

基于基因组规模的动态约束建模 (gDCBM) 框架预测了 CHO 克隆变异性中的生长动态、培养基组成和细胞内通量分布。

A genome-scale dynamic constraint-based modelling (gDCBM) framework predicts growth dynamics, medium composition and intracellular flux distributions in CHO clonal variations.

机构信息

Research Laboratory in Applied Metabolic Engineering, Department of Chemical Engineering, Polytechnique Montréal, P.O. Box 6079, Centre-ville Station, Montréal, Québec, H3C 3A7, Canada.

出版信息

Metab Eng. 2023 Jul;78:209-222. doi: 10.1016/j.ymben.2023.06.005. Epub 2023 Jun 20.

Abstract

Optimizing mammalian cell growth and bioproduction is a tedious task. However, due to the inherent complexity of eukaryotic cells, heuristic experimental approaches such as, metabolic engineering and bioprocess design, are frequently integrated with mathematical models of cell culture to improve biological process efficiency and find paths for improvement. Constraint-based metabolic models have evolved over the last two decades to be used for dynamic modelling in addition to providing a linear description of steady-state metabolic systems. Formulation and implementation of the underlying optimization problems require special attention to the model's performance and feasibility, lack of defects in the definition of system components, and consideration of optimal alternate solutions, in addition to processing power limitations. Here, the time-resolved dynamics of a genome-scale metabolic network of Chinese hamster ovary (CHO) cell metabolism are shown using a genome-scale dynamic constraint-based modelling framework (gDCBM). The metabolic network was adapted from a reference model of CHO genome-scale metabolic model (GSMM), iCHO_DG44_v1, and dynamic restrictions were imposed to its exchange fluxes based on experimental results. We used this framework for predicting physiological changes in CHO clonal variants. Because of the methodical creation of the components for the flux balance analysis optimization problem and the integration of a switch time, this model can generate sequential predictions of intracellular fluxes during growth and non-growth phases (per hour of culture time) and transparently reveal the shortcomings in such practice. As a result of the differences exploited by various clones, we can understand the relevance of changes in intracellular flux distribution and exometabolomics. The integration of various omics data into the given gDCBM framework, as well as the reductionist analysis of the model, can further help bioprocess optimization.

摘要

优化哺乳动物细胞的生长和生物生产是一项繁琐的任务。然而,由于真核细胞的固有复杂性,启发式实验方法,如代谢工程和生物过程设计,经常与细胞培养的数学模型相结合,以提高生物过程的效率并寻找改进的途径。约束代谢模型在过去二十年中不断发展,除了提供稳态代谢系统的线性描述外,还可用于动态建模。基础优化问题的制定和实施需要特别注意模型的性能和可行性,系统组件定义中没有缺陷,并且考虑了最佳替代解决方案,此外还需要考虑处理能力的限制。在这里,使用基于基因组规模的动态约束建模框架(gDCBM)展示了中国仓鼠卵巢(CHO)细胞代谢的基因组规模代谢网络的时间分辨动力学。代谢网络是从 CHO 基因组规模代谢模型(GSMM)的参考模型 iCHO_DG44_v1 改编而来的,并根据实验结果对其交换通量施加了动态限制。我们使用该框架来预测 CHO 克隆变体的生理变化。由于通量平衡分析优化问题的组件是系统地创建的,并且集成了开关时间,因此该模型可以在生长和非生长阶段(每小时培养时间)生成细胞内通量的顺序预测,并透明地揭示这种实践中的缺陷。由于各种克隆利用的差异,我们可以理解细胞内通量分布和外代谢组学变化的相关性。将各种组学数据集成到给定的 gDCBM 框架中,以及对模型的还原分析,可以进一步帮助生物过程优化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验