Suppr超能文献

基于动态事件驱动神经网络的轮式移动机器人系统自适应故障攻击容错控制

Dynamic event-driven neural network-based adaptive fault-attack-tolerant control for wheeled mobile robot system.

作者信息

Guo Bin, Dian Songyi, Zhao Tao, Wang Xingming

机构信息

College of Electrical Engineering, Sichuan University, Chengdu 610065, China.

College of Electrical Engineering, Sichuan University, Chengdu 610065, China.

出版信息

ISA Trans. 2023 Sep;140:71-83. doi: 10.1016/j.isatra.2023.06.010. Epub 2023 Jun 13.

Abstract

In this article, the fault-attack control problem is investigated for wheeled mobile robot (WMR) systems subjected to actuator faults, disturbances, communication attacks, and limited communication resources. An event-observer based compensation controller is presented. With the help of the observer estimation values and the attack sleep/active instant trigger information, the tracking control performance is realized for the robot system with the assistance of the neural network approximation technology. Concretely, first, the robot system dynamic model with actuator faults, disturbances, and attacks is established. Then, an event-based proportional-integral observer (PIO) is established. In the observer framework, a state estimator, an actuator fault efficiency estimator, and a disturbance estimator are embedded. Based on the observer outputs, a second-order adaptive sliding mode fault-compensation reliable controller is presented. In this controller framework, the fault compensation, disturbance attenuation, and the attack sleep/active time instant information are contained to guarantee the reliability and performance recoverability of the robot system. Furthermore, a dynamic even condition and an adaptive trigger scheme are constructed in the sensor and actuator channel to achieve the communication-efficient purpose. Finally, two cases of the robot system are performed to verify the system recoverability of the presented approach.

摘要

本文研究了受执行器故障、干扰、通信攻击和有限通信资源影响的轮式移动机器人(WMR)系统的故障攻击控制问题。提出了一种基于事件观测器的补偿控制器。借助观测器估计值和攻击休眠/激活时刻触发信息,利用神经网络逼近技术实现了机器人系统的跟踪控制性能。具体而言,首先,建立了具有执行器故障、干扰和攻击的机器人系统动力学模型。然后,建立了一种基于事件的比例积分观测器(PIO)。在观测器框架中,嵌入了状态估计器、执行器故障效率估计器和干扰估计器。基于观测器输出,提出了一种二阶自适应滑模故障补偿可靠控制器。在该控制器框架中,包含故障补偿、干扰抑制以及攻击休眠/激活时刻信息,以保证机器人系统的可靠性和性能可恢复性。此外,在传感器和执行器通道中构建了动态事件条件和自适应触发方案,以实现通信高效的目的。最后,对机器人系统的两种情况进行了验证,以验证所提方法的系统可恢复性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验