Suppr超能文献

决策和环境的假设可以在微生物群落模型中产生多个稳定状态。

Assumptions on decision making and environment can yield multiple steady states in microbial community models.

机构信息

Department of Biosystems Science and Engineering (D-BSSE) and SIB Swiss Institute of Bioinformatics, ETH Zurich, 4058, Basel, Switzerland.

出版信息

BMC Bioinformatics. 2023 Jun 22;24(Suppl 1):262. doi: 10.1186/s12859-023-05325-w.

Abstract

BACKGROUND

Microbial community simulations using genome scale metabolic networks (GSMs) are relevant for many application areas, such as the analysis of the human microbiome. Such simulations rely on assumptions about the culturing environment, affecting if the culture may reach a metabolically stationary state with constant microbial concentrations. They also require assumptions on decision making by the microbes: metabolic strategies can be in the interest of individual community members or of the whole community. However, the impact of such common assumptions on community simulation results has not been investigated systematically.

RESULTS

Here, we investigate four combinations of assumptions, elucidate how they are applied in literature, provide novel mathematical formulations for their simulation, and show how the resulting predictions differ qualitatively. Our results stress that different assumption combinations give qualitatively different predictions on microbial coexistence by differential substrate utilization. This fundamental mechanism is critically under explored in the steady state GSM literature with its strong focus on coexistence states due to crossfeeding (division of labor). Furthermore, investigating a realistic synthetic community, where the two involved strains exhibit no growth in isolation, but grow as a community, we predict multiple modes of cooperation, even without an explicit cooperation mechanism.

CONCLUSIONS

Steady state GSM modelling of microbial communities relies both on assumed decision making principles and environmental assumptions. In principle, dynamic flux balance analysis addresses both. In practice, our methods that address the steady state directly may be preferable, especially if the community is expected to display multiple steady states.

摘要

背景

使用基因组尺度代谢网络 (GSM) 进行微生物群落模拟对于许多应用领域都很重要,例如人类微生物组的分析。此类模拟依赖于培养环境的假设,这些假设会影响培养物是否可以达到微生物浓度恒定的代谢稳定状态。它们还需要对微生物的决策做出假设:代谢策略可能符合单个群落成员的利益,也可能符合整个群落的利益。然而,这些常见假设对群落模拟结果的影响尚未得到系统研究。

结果

在这里,我们研究了四个假设组合,阐明了它们在文献中的应用方式,为其模拟提供了新颖的数学公式,并展示了它们的预测结果在定性上的差异。我们的研究结果强调了不同的假设组合通过不同的底物利用对微生物共存产生定性不同的预测。这种基本机制在稳态 GSM 文献中受到严重忽视,其强烈关注由于交叉喂养(分工)而导致的共存状态。此外,通过调查一个现实的合成群落,其中两个涉及的菌株在单独培养时都无法生长,但作为一个群落生长,我们预测了多种合作模式,即使没有明确的合作机制。

结论

微生物群落的稳态 GSM 建模既依赖于假设的决策制定原则,也依赖于环境假设。原则上,动态通量平衡分析可以解决这两个问题。实际上,我们直接解决稳态的方法可能更可取,特别是如果群落预计会显示多个稳态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03c7/10288676/ef340d433214/12859_2023_5325_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验