School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal, 721302, India.
School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal, 721302, India; P.K. Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology Kharagpur, West Bengal, 721302, India.
Comput Biol Med. 2023 Mar;154:106600. doi: 10.1016/j.compbiomed.2023.106600. Epub 2023 Jan 25.
Specialized microbial communities in the fungus-farming termite gut and fungal comb microbiome help maintain host nutrition through interactive biochemical activities of complex carbohydrate degradation. Numerous research studies have been focused on identifying the microbial species in the termite gut and fungal comb microbiota, but the community-wide metabolic interaction patterns remain obscure. The inter-microbial metabolic interactions in the community environment are essential for executing biochemical processes like complex carbohydrate degradation and maintaining the host's physicochemical homeostasis. Recent progress in high-throughput sequencing techniques and mathematical modeling provides suitable platforms for constructing multispecies genome-scale community metabolic models that can render sound knowledge about microbial metabolic interaction patterns. Here, we have implemented the genome-scale metabolic modeling strategy to map the relationship between genes, proteins, and reactions of 12 key bacterial species from fungal cultivating termite gut and fungal comb microbiota. The resulting individual genome-scale metabolic models (GEMs) have been analyzed using flux balance analysis (FBA) to optimize the metabolic flux distribution pattern. Further, these individual GEMs have been integrated into genome-scale community metabolic models where a heuristics-based computational procedure has been employed to track the inter-microbial metabolic interactions. Two separate genome-scale community metabolic models were reconstructed for the O. badius gut and fungal comb microbiome. Analysis of the community models showed up to ∼167% increased flux range in lignocellulose degradation, amino acid biosynthesis, and nucleotide metabolism pathways. The inter-microbial metabolic exchange of amino acids, SCFAs, and small sugars was also upregulated in the multispecies community for maximum biomass formation. The flux variability analysis (FVA) has also been performed to calculate the feasible flux range of metabolic reactions. Furthermore, based on the calculated metabolic flux values, newly defined parameters, i.e., pairwise metabolic assistance (PMA) and community metabolic assistance (CMA) showed that the microbial species are getting up to 15% higher metabolic benefits in the multispecies community compared to pairwise growth. Assessment of the inter-microbial metabolic interaction patterns through pairwise growth support index (PGSI) indicated an increased mutualistic interaction in the termite gut environment compared to the fungal comb. Thus, this genome-scale community modeling study provides a systematic methodology to understand the inter-microbial interaction patterns with several newly defined parameters like PMA, CMA, and PGSI. The microbial metabolic assistance and interaction patterns derived from this computational approach will enhance the understanding of combinatorial microbial activities and may help develop effective synergistic microcosms to utilize complex plant polymers.
在真菌养殖白蚁肠道和真菌梳微生物组中,专门的微生物群落通过复杂碳水化合物降解的相互生化活性,帮助维持宿主营养。大量的研究集中于鉴定白蚁肠道和真菌梳微生物组中的微生物物种,但群落范围内的代谢相互作用模式仍不清楚。群落环境中的微生物间代谢相互作用对于执行复杂碳水化合物降解等生化过程以及维持宿主的物理化学平衡至关重要。高通量测序技术和数学建模的最新进展为构建多物种基因组规模群落代谢模型提供了合适的平台,这些模型可以提供有关微生物代谢相互作用模式的可靠知识。在这里,我们实施了基因组规模代谢建模策略,以绘制 12 种关键细菌物种的基因、蛋白质和反应与真菌养殖白蚁肠道和真菌梳微生物组之间的关系。使用通量平衡分析(FBA)对生成的单个基因组规模代谢模型(GEM)进行了分析,以优化代谢通量分布模式。此外,这些单个 GEM 已整合到基因组规模的群落代谢模型中,其中使用启发式计算程序来跟踪微生物间的代谢相互作用。分别为 O. badius 肠道和真菌梳微生物组重建了两个单独的基因组规模的群落代谢模型。群落模型的分析表明,木质纤维素降解、氨基酸生物合成和核苷酸代谢途径的通量范围增加了高达 167%。在多物种群落中,氨基酸、SCFA 和小糖的微生物间代谢交换也被上调,以实现最大生物量形成。通量可变性分析(FVA)也已用于计算代谢反应的可行通量范围。此外,基于计算出的代谢通量值,新定义的参数,即成对代谢辅助(PMA)和群落代谢辅助(CMA)表明,与成对生长相比,微生物物种在多物种群落中获得高达 15%的更高代谢收益。通过成对生长支持指数(PGSI)评估微生物间代谢相互作用模式表明,与真菌梳相比,在白蚁肠道环境中存在更多的互利相互作用。因此,这项基因组规模的群落建模研究提供了一种系统的方法来理解通过几个新定义的参数(如 PMA、CMA 和 PGSI)的微生物间相互作用模式。从这种计算方法中得出的微生物代谢辅助和相互作用模式将增强对组合微生物活动的理解,并可能有助于开发有效的协同微生态系统来利用复杂的植物聚合物。