Department of Microbiology, New York University Grossman School of Medicine , New York, New York, USA.
Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine , New York, New York, USA.
mBio. 2023 Aug 31;14(4):e0036323. doi: 10.1128/mbio.00363-23. Epub 2023 Jun 23.
is a major human pathogen and the causative agent of tuberculosis disease. is able to persist in the face of host-derived antimicrobial molecules nitric oxide (NO) and copper (Cu). However, with defective proteasome activity is highly sensitive to NO and Cu, making the proteasome an attractive target for drug development. Previous work linked NO susceptibility with the accumulation of -hydroxybenzaldehyde (HBA) in mutants with defective proteasomal degradation. In this study, we found that HBA accumulation was also responsible for Cu sensitivity in these strains. We showed that exogenous addition of HBA to wild-type cultures sensitized bacteria to Cu to a degree similar to that of a proteasomal degradation mutant. We determined that HBA reduced the production and function of critical Cu resistance proteins of the egulated n opper epressor (RicR) regulon. Furthermore, we extended these Cu-sensitizing effects to an aldehyde that may face within the macrophage. Collectively, this study is the first to mechanistically propose how aldehydes can render susceptible to an existing host defense and could support a broader role for aldehydes in controlling infections. IMPORTANCE is a leading cause of death by a single infectious agent, causing 1.5 million deaths annually. An effective vaccine for infections is currently lacking, and prior infection does not typically provide robust immunity to subsequent infections. Nonetheless, immunocompetent humans can control infections for decades. For these reasons, a clear understanding of how mammalian immunity inhibits mycobacterial growth is warranted. In this study, we show aldehydes can increase susceptibility to copper, an established antibacterial metal used by immune cells to control and other microbes. Given that activated macrophages produce increased amounts of aldehydes during infection, we propose host-derived aldehydes may help control bacterial infections, making aldehydes a previously unappreciated antimicrobial defense.
结核分枝杆菌是一种主要的人类病原体,也是结核病的病原体。结核分枝杆菌能够在宿主来源的抗菌分子一氧化氮(NO)和铜(Cu)的存在下持续存在。然而,蛋白酶体活性缺陷的结核分枝杆菌对 NO 和 Cu 高度敏感,这使得蛋白酶体成为药物开发的有吸引力的靶点。以前的工作将 NO 敏感性与缺陷蛋白酶体降解的突变体中 -羟基苯甲醛(HBA)的积累联系起来。在这项研究中,我们发现 HBA 的积累也导致了这些菌株对 Cu 的敏感性。我们表明,向野生型 培养物中外源添加 HBA 使细菌对 Cu 的敏感性提高到类似于蛋白酶体降解突变体的程度。我们确定 HBA 降低了调节铜抗性蛋白的产生和功能受调控的铜抑制剂(RicR)调控基因。此外,我们将这些 Cu 增敏作用扩展到 可能在巨噬细胞中面临的醛。总的来说,这项研究首次从机制上提出了醛类如何使 易受现有宿主防御的影响,并可能支持醛类在控制 感染方面发挥更广泛的作用。重要性结核分枝杆菌是由单一感染因子引起的死亡的主要原因,每年导致 150 万人死亡。目前缺乏针对 感染的有效疫苗,既往感染通常不能为随后的感染提供强大的免疫力。尽管如此,免疫功能正常的人可以控制 感染数十年。出于这些原因,需要清楚地了解哺乳动物免疫如何抑制分枝杆菌的生长。在这项研究中,我们表明醛类可以增加铜的易感性,铜是免疫细胞用于控制 和其他微生物的一种已建立的抗菌金属。鉴于激活的巨噬细胞在感染过程中产生更多量的醛,我们提出宿主衍生的醛可能有助于控制细菌感染,使醛成为以前未被认识到的抗菌防御。