Institut für Psychologie, University of Münster, Münster, Germany.
Multivariate Behav Res. 2024 Jan-Feb;59(1):98-109. doi: 10.1080/00273171.2023.2217418. Epub 2023 Jun 23.
Research in psychology has seen a rapid increase in the usage of experience sampling methods and daily diary methods. The data that result from using these methods are typically analyzed with a mixed-effects or a multilevel model because it allows testing hypotheses about the time course of the longitudinally assessed variable or the influence of time-varying predictors in a simple way. Here, we describe an extension of this model that does not only allow to include random effects for the mean structure but also for the residual variance, for the parameter of an autoregressive process of order 1 and/or the parameter of a moving average process of order 1. After we have introduced this extension, we show how to estimate the parameters with maximum likelihood. Because the likelihood function contains complex integrals, we suggest using adaptive Gauss-Hermite quadrature and Quasi-Monte Carlo integration to approximate it. We illustrate the models using a real data example and also report the results of a small simulation study in which the two integral approximation methods are compared.
心理学研究中越来越多地使用经验采样方法和日常日记方法。使用这些方法得到的数据通常使用混合效应或多层次模型进行分析,因为它可以简单地检验关于纵向评估变量的时间过程或时变预测因子的影响的假设。在这里,我们描述了该模型的扩展,该扩展不仅允许为均值结构而且为残差方差、自回归过程阶 1 的参数和/或移动平均过程阶 1 的参数包含随机效应。在引入此扩展之后,我们将展示如何使用最大似然法估计参数。由于似然函数包含复杂的积分,因此我们建议使用自适应高斯-赫尔墨特求积法和拟蒙特卡罗积分法来近似它。我们使用实际数据示例来说明模型,并报告了两种积分逼近方法的小型模拟研究的结果。