Suppr超能文献

纵向数据与生存数据的联合建模:纳入延迟进入及模型误设评估

Joint modelling of longitudinal and survival data: incorporating delayed entry and an assessment of model misspecification.

作者信息

Crowther Michael J, Andersson Therese M-L, Lambert Paul C, Abrams Keith R, Humphreys Keith

机构信息

Department of Health Sciences, University of Leicester, Adrian Building, University Road, Leicester, LE1 7RH, U.K.

Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Box 281, Stockholm, S-171 77, Sweden.

出版信息

Stat Med. 2016 Mar 30;35(7):1193-209. doi: 10.1002/sim.6779. Epub 2015 Oct 29.

Abstract

A now common goal in medical research is to investigate the inter-relationships between a repeatedly measured biomarker, measured with error, and the time to an event of interest. This form of question can be tackled with a joint longitudinal-survival model, with the most common approach combining a longitudinal mixed effects model with a proportional hazards survival model, where the models are linked through shared random effects. In this article, we look at incorporating delayed entry (left truncation), which has received relatively little attention. The extension to delayed entry requires a second set of numerical integration, beyond that required in a standard joint model. We therefore implement two sets of fully adaptive Gauss-Hermite quadrature with nested Gauss-Kronrod quadrature (to allow time-dependent association structures), conducted simultaneously, to evaluate the likelihood. We evaluate fully adaptive quadrature compared with previously proposed non-adaptive quadrature through a simulation study, showing substantial improvements, both in terms of minimising bias and reducing computation time. We further investigate, through simulation, the consequences of misspecifying the longitudinal trajectory and its impact on estimates of association. Our scenarios showed the current value association structure to be very robust, compared with the rate of change that we found to be highly sensitive showing that assuming a simpler trend when the truth is more complex can lead to substantial bias. With emphasis on flexible parametric approaches, we generalise previous models by proposing the use of polynomials or splines to capture the longitudinal trend and restricted cubic splines to model the baseline log hazard function. The methods are illustrated on a dataset of breast cancer patients, modelling mammographic density jointly with survival, where we show how to incorporate density measurements prior to the at-risk period, to make use of all the available information. User-friendly Stata software is provided.

摘要

医学研究中一个现在常见的目标是研究一个反复测量的生物标志物(测量存在误差)与感兴趣事件发生时间之间的相互关系。这种形式的问题可以用联合纵向生存模型来解决,最常见的方法是将纵向混合效应模型与比例风险生存模型相结合,其中这些模型通过共享随机效应联系起来。在本文中,我们着眼于纳入延迟进入(左截断),这方面受到的关注相对较少。向延迟进入的扩展除了标准联合模型所需的数值积分外,还需要第二组数值积分。因此,我们实现了两组完全自适应高斯 - 埃尔米特求积法与嵌套高斯 - 克朗罗德求积法(以允许时间依存关联结构),同时进行,以评估似然性。我们通过模拟研究评估了完全自适应求积法与先前提出的非自适应求积法相比的情况,结果表明在最小化偏差和减少计算时间方面都有显著改进。我们还通过模拟进一步研究了错误指定纵向轨迹的后果及其对关联估计的影响。我们的情景表明,与变化率相比,当前值关联结构非常稳健,我们发现变化率高度敏感,这表明当真实情况更复杂时假设一个更简单的趋势会导致大量偏差。强调灵活的参数方法,我们通过提议使用多项式或样条来捕捉纵向趋势以及使用受限立方样条来建模基线对数风险函数,对先前的模型进行了推广。在一个乳腺癌患者数据集上对这些方法进行了说明,该数据集将乳房X线密度与生存联合建模,我们展示了如何在风险期之前纳入密度测量,以利用所有可用信息。并提供了用户友好的Stata软件。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb0e/5019272/9c937e68ffd0/SIM-35-1193-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验