Suppr超能文献

基于时空信息网络模型的 PM2.5 浓度时空特征分析与预测模型

Spatial and temporal characteristics analysis and prediction model of PM2.5 concentration based on SpatioTemporal-Informer model.

机构信息

School of Information Science and Technology, Baotou Teachers' College, Baotou, Inner Mongolia, China.

School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, China.

出版信息

PLoS One. 2023 Jun 23;18(6):e0287423. doi: 10.1371/journal.pone.0287423. eCollection 2023.

Abstract

The primary cause of hazy weather is PM2.5, and forecasting PM2.5 concentrations can aid in managing and preventing hazy weather. This paper proposes a novel spatiotemporal prediction model called SpatioTemporal-Informer (ST-Informer) in response to the shortcomings of spatiotemporal prediction models commonly used in studies for long-input series prediction. The ST-Informer model implements parallel computation of long correlations and adds an independent spatiotemporal embedding layer to the original Informer model. The spatiotemporal embedding layer captures the complex dynamic spatiotemporal correlations among the input information. In addition, the ProbSpare Self-Attention mechanism in this model can focus on extracting important contextual information of spatiotemporal data. The ST-Informer model uses weather and air pollutant concentration data from numerous stations as its input data. The outcomes of the trials indicate that (1) The ST-Informer model can sharply capture the peaks and sudden changes in PM2.5 concentrations. (2) Compared to the current models, the ST-Informer model shows better prediction performance while maintaining high-efficiency prediction [Formula: see text]. (3) The ST-Informer model has universal applicability, and the model was applied to the concentration of other pollutants prediction with good results.

摘要

造成雾霾天气的主要原因是 PM2.5,预测 PM2.5 浓度有助于雾霾天气的管理和预防。针对长输入序列预测中常用的时空预测模型的缺点,本文提出了一种新的时空预测模型,称为时空信息器(SpatioTemporal-Informer,ST-Informer)。ST-Informer 模型实现了长相关的并行计算,并在原始 Informer 模型中添加了独立的时空嵌入层。时空嵌入层捕捉输入信息之间复杂的动态时空相关性。此外,该模型中的 ProbSpare 自注意力机制可以专注于提取时空数据的重要上下文信息。ST-Informer 模型使用来自多个站点的天气和空气污染物浓度数据作为其输入数据。试验结果表明:(1)ST-Informer 模型能够准确捕捉 PM2.5 浓度的峰值和突变。(2)与现有模型相比,ST-Informer 模型在保持高效预测的同时,具有更好的预测性能 [公式:见正文]。(3)ST-Informer 模型具有通用性,该模型应用于其他污染物浓度预测,效果良好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f26/10289464/3346616314ca/pone.0287423.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验