Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA.
Molecular Structure and Design, Bristol Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543, USA.
J Chem Phys. 2023 Jun 28;158(24). doi: 10.1063/5.0155895.
Dimer interaction energies have been well studied in computational chemistry, but they can offer an incomplete understanding of molecular binding depending on the system. In the current study, we present a dataset of focal-point coupled-cluster interaction and deformation energies (summing to binding energies, De) of 28 organic molecular dimers. We use these highly accurate energies to evaluate ten density functional approximations for their accuracy. The best performing method (with a double-ζ basis set), B97M-D3BJ, is then used to calculate the binding energies of 104 organic dimers, and we analyze the influence of the nature and strength of interaction on deformation energies. Deformation energies can be as large as 50% of the dimer interaction energy, especially when hydrogen bonding is present. In most cases, two or more hydrogen bonds present in a dimer correspond to an interaction energy of -10 to -25 kcal mol-1, allowing a deformation energy above 1 kcal mol-1 (and up to 9.5 kcal mol-1). A lack of hydrogen bonding usually restricts the deformation energy to below 1 kcal mol-1 due to the weaker interaction energy.
二聚体相互作用能在计算化学中已经得到了很好的研究,但它们可能无法提供对分子结合的完整理解,这取决于系统。在本研究中,我们提供了一个由 28 个有机分子二聚体的焦点耦合簇相互作用和变形能(加和为结合能,De)组成的数据集。我们使用这些高度准确的能量来评估十种密度泛函近似方法的准确性。表现最好的方法(带有双 ζ 基组)B97M-D3BJ 随后用于计算 104 个有机二聚体的结合能,我们分析了相互作用的性质和强度对变形能的影响。变形能可以高达二聚体相互作用能的 50%,特别是当存在氢键时。在大多数情况下,二聚体中存在两个或更多氢键对应于-10 到-25 kcal mol-1 的相互作用能,允许变形能超过 1 kcal mol-1(最高可达 9.5 kcal mol-1)。由于相互作用能较弱,通常缺乏氢键会将变形能限制在 1 kcal mol-1 以下。