Palaniappan Prasannakumar, Knudsen Yana, Meyer Sebastian, Gianoli Chiara, Schnürle Katrin, Würl Matthias, Bortfeldt Jonathan, Parodi Katia, Riboldi Marco
Department of Medical Physics - Experimental Physics, Ludwig-Maximilians-Universität München, Munich, Germany.
Department of Medical Physics - Experimental Physics, Ludwig-Maximilians-Universität München, Munich, Germany.
Z Med Phys. 2024 Nov;34(4):521-532. doi: 10.1016/j.zemedi.2023.04.003. Epub 2023 Jun 21.
We present a multi-stage and multi-resolution deformable image registration framework for image-guidance at a small animal proton irradiation platform. The framework is based on list-mode proton radiographies acquired at different angles, which are used to deform a 3D treatment planning CT relying on normalized mutual information (NMI) or root mean square error (RMSE) in the projection domain. We utilized a mouse X-ray micro-CT expressed in relative stopping power (RSP), and obtained Monte Carlo simulations of proton images in list-mode for three different treatment sites (brain, head and neck, lung). Rigid transformations and controlled artificial deformation were applied to mimic position misalignments, weight loss and breathing changes. Results were evaluated based on the residual RMSE of RSP in the image domain including the comparison of extracted local features, i.e. between the reference micro-CT and the one transformed taking into account the calculated deformation. The residual RMSE of the RSP showed that the accuracy of the registration framework is promising for compensating rigid (>97% accuracy) and non-rigid (∼95% accuracy) transformations with respect to a conventional 3D-3D registration. Results showed that the registration accuracy is degraded when considering the realistic detector performance and NMI as a metric, whereas the RMSE in projection domain is rather insensitive. This work demonstrates the pre-clinical feasibility of the registration framework on different treatment sites and its use for small animal imaging with a realistic detector. Further computational optimization of the framework is required to enable the use of this tool for online estimation of the deformation.
我们提出了一种用于小动物质子辐照平台图像引导的多阶段、多分辨率可变形图像配准框架。该框架基于在不同角度采集的列表模式质子射线照相,用于依靠投影域中的归一化互信息(NMI)或均方根误差(RMSE)对三维治疗计划CT进行变形。我们利用以相对阻止本领(RSP)表示的小鼠X射线微型CT,并获得了针对三个不同治疗部位(脑、头颈部、肺)的列表模式质子图像的蒙特卡罗模拟。应用刚性变换和可控人工变形来模拟位置失准、体重减轻和呼吸变化。基于图像域中RSP的残余RMSE对结果进行评估,包括提取的局部特征的比较,即在参考微型CT与考虑计算出的变形进行变换后的微型CT之间的比较。RSP的残余RMSE表明,相对于传统的三维-三维配准,配准框架在补偿刚性(准确率>97%)和非刚性(准确率约95%)变换方面的准确性很有前景。结果表明,当将实际探测器性能和NMI作为度量标准时,配准精度会降低,而投影域中的RMSE则相当不敏感。这项工作证明了配准框架在不同治疗部位的临床前可行性及其在使用实际探测器进行小动物成像中的应用。需要对该框架进行进一步的计算优化,以使该工具能够用于变形的在线估计。