Suppr超能文献

利用黄斑速度测量将骨导参数与前庭复合动作电位反应相关联。

Using macular velocity measurements to relate parameters of bone conduction to vestibular compound action potential responses.

机构信息

Faculty of Science and Engineering, School of Engineering, Macquarie University, Sydney, NSW, 2109, Australia.

School of Medical Sciences, The University of Sydney, Sydney, NSW, 2050, Australia.

出版信息

Sci Rep. 2023 Jun 23;13(1):10204. doi: 10.1038/s41598-023-37102-3.

Abstract

To examine mechanisms responsible for vestibular afferent sensitivity to transient bone conducted vibration, we performed simultaneous measurements of stimulus-evoked vestibular compound action potentials (vCAPs), utricular macula velocity, and vestibular microphonics (VMs) in anaesthetized guinea pigs. Results provide new insights into the kinematic variables of transient motion responsible for triggering mammalian vCAPs, revealing synchronized vestibular afferent responses are not universally sensitive to linear jerk as previously thought. For short duration stimuli (< 1 ms), the vCAP increases magnitude in close proportion to macular velocity and temporal bone (linear) acceleration, rather than other kinematic elements. For longer duration stimuli, the vCAP magnitude switches from temporal bone acceleration sensitive to linear jerk sensitive while maintaining macular velocity sensitivity. Frequency tuning curves evoked by tone-burst stimuli show vCAPs increase in proportion to onset macular velocity, while VMs increase in proportion to macular displacement across the entire frequency bandwidth tested between 0.1 and 2 kHz. The subset of vestibular afferent neurons responsible for synchronized firing and vCAPs have been shown previously to make calyceal synaptic contacts with type I hair cells in the striolar region of the epithelium and have irregularly spaced inter-spike intervals at rest. Present results provide new insight into mechanical and neural mechanisms underlying synchronized action potentials in these sensitive afferents, with clinical relevance for understanding the activation and tuning of neurons responsible for driving rapid compensatory reflex responses.

摘要

为了研究前庭传入纤维对瞬态骨导振动敏感的机制,我们在麻醉豚鼠中同时测量了刺激诱发的前庭复合动作电位(vCAP)、椭圆囊斑速度和前庭微音(VM)。结果为触发哺乳动物 vCAP 的运动运动学变量提供了新的见解,揭示了先前认为的同步前庭传入反应并非普遍对线性冲击敏感。对于短持续时间的刺激(<1ms),vCAP 的幅度与黄斑速度和颞骨(线性)加速度密切成比例增加,而不是其他运动学元素。对于较长持续时间的刺激,vCAP 幅度从颞骨加速度敏感切换到线性冲击敏感,同时保持黄斑速度敏感。由声爆发刺激引起的频率调谐曲线显示 vCAP 与起始黄斑速度成比例增加,而 VM 与黄斑在整个测试频率带宽(0.1 至 2kHz)内的位移成比例增加。先前已经表明,负责同步放电和 vCAP 的前庭传入神经元的子集与嵴区域的 I 型毛细胞形成钙状突触接触,并且在静止时具有不规则间隔的尖峰间隔。目前的结果为这些敏感传入纤维中同步动作电位的机械和神经机制提供了新的见解,对于理解负责驱动快速补偿反射反应的神经元的激活和调谐具有临床意义。

相似文献

2
Bone conducted vibration selectively activates irregular primary otolithic vestibular neurons in the guinea pig.
Exp Brain Res. 2006 Nov;175(2):256-67. doi: 10.1007/s00221-006-0544-1. Epub 2006 Jun 8.
4
Evidence That Ultrafast Nonquantal Transmission Underlies Synchronized Vestibular Action Potential Generation.
J Neurosci. 2023 Oct 25;43(43):7149-7157. doi: 10.1523/JNEUROSCI.1417-23.2023. Epub 2023 Sep 29.
6
Evidence for the utricular origin of the vestibular short-latency-evoked potential (VsEP) to bone-conducted vibration in guinea pig.
Exp Brain Res. 2013 Aug;229(2):157-70. doi: 10.1007/s00221-013-3602-5. Epub 2013 Jun 19.
7
Vestibular primary afferent responses to sound and vibration in the guinea pig.
Exp Brain Res. 2011 May;210(3-4):347-52. doi: 10.1007/s00221-010-2499-5. Epub 2010 Nov 28.
8
Neural basis of new clinical vestibular tests: otolithic neural responses to sound and vibration.
Clin Exp Pharmacol Physiol. 2014 May;41(5):371-80. doi: 10.1111/1440-1681.12222.
9
In vivo recording of the vestibular microphonic in mammals.
Hear Res. 2017 Oct;354:38-47. doi: 10.1016/j.heares.2017.07.015. Epub 2017 Jul 26.

引用本文的文献

1
Vestibular Testing-New Physiological Results for the Optimization of Clinical VEMP Stimuli.
Audiol Res. 2023 Nov 9;13(6):910-928. doi: 10.3390/audiolres13060079.
2
Evidence That Ultrafast Nonquantal Transmission Underlies Synchronized Vestibular Action Potential Generation.
J Neurosci. 2023 Oct 25;43(43):7149-7157. doi: 10.1523/JNEUROSCI.1417-23.2023. Epub 2023 Sep 29.

本文引用的文献

2
A Single Fast Test for Semicircular Canal Dehiscence-oVEMP n10 to 4000 Hz-Depends on Stimulus Rise Time.
Audiol Res. 2022 Aug 24;12(5):457-465. doi: 10.3390/audiolres12050046.
4
Synaptic transmission at the vestibular hair cells of amniotes.
Mol Cell Neurosci. 2022 Jul;121:103749. doi: 10.1016/j.mcn.2022.103749. Epub 2022 Jun 3.
5
Similarities and Differences Between Vestibular and Cochlear Systems - A Review of Clinical and Physiological Evidence.
Front Neurosci. 2021 Aug 12;15:695179. doi: 10.3389/fnins.2021.695179. eCollection 2021.
6
Summating potentials from the utricular macula of anaesthetized guinea pigs.
Hear Res. 2021 Jul;406:108259. doi: 10.1016/j.heares.2021.108259. Epub 2021 May 13.
7
Investigating short latency subcortical vestibular projections in humans: what have we learned?
J Neurophysiol. 2019 Nov 1;122(5):2000-2015. doi: 10.1152/jn.00157.2019. Epub 2019 Oct 9.
9
Vestibular evoked myogenic potentials in practice: Methods, pitfalls and clinical applications.
Clin Neurophysiol Pract. 2019 Feb 26;4:47-68. doi: 10.1016/j.cnp.2019.01.005. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验