Suppr超能文献

前庭测试——优化临床VEMP刺激的新生理结果

Vestibular Testing-New Physiological Results for the Optimization of Clinical VEMP Stimuli.

作者信息

Pastras Christopher J, Curthoys Ian S

机构信息

Faculty of Science and Engineering, School of Engineering, Macquarie University, Sydney, NSW 2109, Australia.

Vestibular Research Laboratory, School of Psychology, The University of Sydney, Sydney, NSW 2006, Australia.

出版信息

Audiol Res. 2023 Nov 9;13(6):910-928. doi: 10.3390/audiolres13060079.

Abstract

Both auditory and vestibular primary afferent neurons can be activated by sound and vibration. This review relates the differences between them to the different receptor/synaptic mechanisms of the two systems, as shown by indicators of peripheral function-cochlear and vestibular compound action potentials (cCAPs and vCAPs)-to click stimulation as recorded in animal studies. Sound- and vibration-sensitive type 1 receptors at the striola of the utricular macula are enveloped by the unique calyx afferent ending, which has three modes of synaptic transmission. Glutamate is the transmitter for both cochlear and vestibular primary afferents; however, blocking glutamate transmission has very little effect on vCAPs but greatly reduces cCAPs. We suggest that the ultrafast non-quantal synaptic mechanism called resistive coupling is the cause of the short latency vestibular afferent responses and related results-failure of transmitter blockade, masking, and temporal precision. This "ultrafast" non-quantal transmission is effectively electrical coupling that is dependent on the membrane potentials of the calyx and the type 1 receptor. The major clinical implication is that decreasing stimulus rise time increases vCAP response, corresponding to the increased VEMP response in human subjects. Short rise times are optimal in human clinical VEMP testing, whereas long rise times are mandatory for audiometric threshold testing.

摘要

听觉和前庭的初级传入神经元均可被声音和振动激活。本综述将它们之间的差异与两个系统不同的感受器/突触机制联系起来,如动物研究中记录的点击刺激下外周功能指标——耳蜗和前庭复合动作电位(cCAPs和vCAPs)所示。椭圆囊斑条纹处对声音和振动敏感的1型感受器被独特的杯状传入末梢所包裹,该末梢具有三种突触传递模式。谷氨酸是耳蜗和前庭初级传入神经的递质;然而,阻断谷氨酸传递对vCAPs影响很小,但会大大降低cCAPs。我们认为,被称为电阻耦合的超快非量子突触机制是前庭传入神经短潜伏期反应及相关结果(递质阻断失败、掩蔽和时间精度)的原因。这种“超快”非量子传递实际上是一种电耦合,它依赖于杯状末梢和1型感受器的膜电位。主要的临床意义在于,缩短刺激上升时间会增加vCAP反应,这与人类受试者中VEMP反应增加相对应。在人类临床VEMP测试中,短上升时间是最佳的,而在听力阈值测试中则必须使用长上升时间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d3b6/10660708/df65082668e2/audiolres-13-00079-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验