Yang Xing, Li Ruiyun, Wang Yongfu, Zhang Junyan
State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Science, Lanzhou, 730 000, China.
Institute of Superlubricity Technology, Research Institute of Tsinghua University in Shenzhen, Shenzhen, 518057, China.
Adv Mater. 2023 Sep;35(39):e2303580. doi: 10.1002/adma.202303580. Epub 2023 Aug 6.
Achieving macroscale superlubricity of van der Waals (vdW) nanopowders is particularly challenging, due to the difficulty in forming ordered junctions before friction and the friction-induced complex contact restructuration among multiple nanometer-sized junctions. Here, a facile way is reported to achieve vdW nanopowder-to-heterojunction conversion by graphene edge-oxygen (GEO) incorporation. The GEO effectively weakens the out-of-plane edge-edge and in-plane plane-edge states of the vdW nanopowder, leading to a coexistent structure of nanoscale homojunctions and heterojunctions on the grinding balls. When sliding on diamond-like carbon surfaces, the ball-supported structure governs macroscale superlubricity by heterojunction-to-homojunction transformation among the countless nanoscale junctions. Furthermore, the transformation guides the tunable design of superlubricity, achieving superlubricity (µ ≈ 0.005) at wide ranges of load, velocity, and temperature (-200 to 300 °C). Atomistic simulations reveal the GEO-enhanced conversion of vdW nanopowder to heterojunctions and demonstrate the heterojunction-to-homojunction transformation superlubricity mechanism. The findings are of significance for the macroscopic scale-up and engineering application of structural superlubricity.
实现范德华(vdW)纳米粉末的宏观超润滑性极具挑战性,这是因为在摩擦前难以形成有序连接,以及多个纳米级连接之间存在摩擦诱导复杂接触重构。在此,报告了一种通过引入石墨烯边缘氧(GEO)实现vdW纳米粉末向异质结转变的简便方法。GEO有效减弱了vdW纳米粉末的面外边缘 - 边缘和面内平面 - 边缘状态,导致磨球上纳米级同质结和异质结共存结构。在类金刚石碳表面滑动时,球支撑结构通过无数纳米级连接之间的异质结到同质结转变来控制宏观超润滑性。此外,这种转变指导了超润滑性的可调设计,在宽范围的负载、速度和温度(-200至300°C)下实现了超润滑性(μ≈0.005)。原子模拟揭示了GEO增强的vdW纳米粉末向异质结的转变,并证明了异质结到同质结转变的超润滑机制。这些发现对于结构超润滑性的宏观放大和工程应用具有重要意义。