Center for Nanoscale Materials, 9700 South Cass Avenue, Argonne National Laboratory, Argonne, IL 60439, USA.
Energy Systems Division, 9700 South Cass Avenue, Argonne National Laboratory, Argonne, IL 60439, USA.
Science. 2015 Jun 5;348(6239):1118-22. doi: 10.1126/science.1262024. Epub 2015 May 14.
Friction and wear remain as the primary modes of mechanical energy dissipation in moving mechanical assemblies; thus, it is desirable to minimize friction in a number of applications. We demonstrate that superlubricity can be realized at engineering scale when graphene is used in combination with nanodiamond particles and diamondlike carbon (DLC). Macroscopic superlubricity originates because graphene patches at a sliding interface wrap around nanodiamonds to form nanoscrolls with reduced contact area that slide against the DLC surface, achieving an incommensurate contact and substantially reduced coefficient of friction (~0.004). Atomistic simulations elucidate the overall mechanism and mesoscopic link bridging the nanoscale mechanics and macroscopic experimental observations.
摩擦和磨损仍然是运动机械组件中机械能耗散的主要方式;因此,在许多应用中,减少摩擦是很有必要的。我们证明了在工程尺度上,当石墨烯与纳米金刚石颗粒和类金刚石碳(DLC)结合使用时,可以实现超润滑。宏观超润滑的产生是因为在滑动界面处的石墨烯片包裹纳米金刚石形成纳米卷,从而减小了与 DLC 表面滑动的接触面积,实现了非调和接触并大大降低了摩擦系数(~0.004)。原子模拟阐明了整体机制和介观联系,将纳米尺度力学和宏观实验观察联系起来。