Suppr超能文献

使用降维方法的机器学习技术对溶解氧浓度进行建模。

Modeling dissolved oxygen concentration using machine learning techniques with dimensionality reduction approach.

机构信息

Graduate School of Natural and Applied Sciences, Gazi University, Teknikokullar, 06500, Turkey.

Department of Science, Gazi University, Teknikokullar, 06500, Turkey.

出版信息

Environ Monit Assess. 2023 Jun 24;195(7):879. doi: 10.1007/s10661-023-11492-3.

Abstract

Oxygen is crucial to keep the life cycle balance in any aspect. Aquatic life is highly influenced by the levels of dissolved oxygen (DO). This calls for not just constant monitoring of the DO in aquatic systems, but to generate an accurate prediction model for future levels of the DO. This study aims to propose an accurate prediction model for DO concentrations. The performance of the Random Forest (RF) and multilayer perceptron (MLP) algorithms was evaluated in generating the regression models. Moreover, the effect of dimensionality reduction of the data by the wrapper feature Selection method on the performance of the models was evaluated. The results showed that the RF regressor excelled MLP in performance with both the dataset of all variables and the dataset of reduced variables with the best performance achieved by the RF regressor by considering Pearson correlation coefficient (0.8052), Mean absolute error (0.8911), and root mean square error (1.2805) when trained by the dataset of reduced variables. As for the accuracy of the models, the estimation error deviation of both models declined significantly when trained by the reduced variables. When the accuracy of the prediction was increased by 0.95% by the RF regressor, the accuracy of the MLP was incremented by 5.7% when trained by the dataset of reduced variables. The results demonstrated the positive impact of the dimensionality reduction on the accuracy of both models. However, RF can be considered a robust regressor in predicting DO concentrations.

摘要

氧气对于维持任何方面的生命周期平衡都至关重要。水生生物受到溶解氧 (DO) 水平的高度影响。这不仅需要对水生系统中的 DO 进行持续监测,还需要生成 DO 未来水平的准确预测模型。本研究旨在提出一种准确的 DO 浓度预测模型。评估了随机森林 (RF) 和多层感知机 (MLP) 算法在生成回归模型方面的性能。此外,还评估了包装特征选择方法对数据降维对模型性能的影响。结果表明,RF 回归器在性能上优于 MLP,无论是在所有变量的数据集上,还是在使用 Pearson 相关系数 (0.8052)、平均绝对误差 (0.8911) 和均方根误差 (1.2805) 考虑到通过缩减变量数据集训练时,RF 回归器的性能最佳,还是在缩减变量数据集上训练时,RF 回归器的性能最佳。至于模型的准确性,当通过缩减变量进行训练时,两个模型的估计误差偏差都显著降低。当 RF 回归器的预测准确性提高 0.95%时,当通过缩减变量数据集训练时,MLP 的准确性提高了 5.7%。结果表明,降维对两个模型的准确性都有积极影响。然而,RF 可以被认为是预测 DO 浓度的稳健回归器。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验